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Abstract

In the past few years, the Mized H,/Ho~Control Problem has been the object of
much research interest, since it allows the incorporation of robust stability into the
LQG-framework. The general Mized Hz/Ho -Design Problem has yet to be solved an-
alytically. Numerous schemes have considered upper bounds for the ‘H,—performance
criterion and/or imposed restrictive constraints on the class of systems under mvesti-
gation. Furthermore, many modern control applications rely on dynamic models ob-
tained from finite—element analysis and thus involve high—order plant models. Hence
the capability to design low-order (fixed-order) controllers is of great importance. In
this research a new design method was developed, that optimizes the exact Hy-norm
of a certain subsystem subject to robust stability in terms of Ho,—constraints and a
minimal number of system assumptions. The derived algorithm is based on a differ-
entiable scalar time—domain penalty function to represent the H—constraints in the
overall optimization. The scheme is capable of handling multiple plant conditions
and hence multiple performance criteria and H—constraints, and incorporates addi-
tional constraints such as fixed-order and/or fixed—structure controllers. The defined
penalty function is applicable to any constraint that is expressible in form of a real

symmetric matrix-inequality.
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Basic Notation:

GLOSSARY

: Square root of —1.

: Factorial of a positive integer k.

: Real and imaginary part of a complex number z.
: Absolute value of a (complex) number z.

: Element of a set, e.g., x € L,.

. Equivalence definition, i.e. the state-space realization

of a linear system G := (A, B,C, D).

: Mapping from one space to another, e.g. the mapping of

L,-signals w(s) € R™ to signals z(s) € R"* defined by
the transfer function G(s) of a linear system,

G(s) :w(s) — z(s).

Vector and Matrix Notation:

dim(x)
E(x)

1
vec(M)
diag(M)

Trace(M)
|M]

MT

M1

: Dimension of a vector .

: Expected value of x.

: Identity matrix.

. Vector representation of a matrix M (see appendix A).

: Diagonal matrix with the main diagonal of M and

zero entries everywhere else.

: Trace operator.
. Determinant of a square matrix M.
: Transpose of M.

. Inverse of M.



Mt . Generalized Moore Penrose inverse of a matrix M.

eM : Matrix exponential.

M>0(M>0) : The symmetric matrix M is positive definite (semidefinite).
R(M) : Range space of the matrix M.

N (M) : Null space of the matrix M.

(M), M(M) . kt" and maximal eigenvalue of M, respectively.

ox(M), a(M) . k" and maximum singular value of M, respectively.

Gradient—Related Notation:

df (K,dK) - . Variation of a scalar cost function f(K) due to a
matrix variation dK (see appendix A).

dM(K,dK) . Matrix equivalent of df (K,dK) for a matrix-valued
function of a matrix K (see appendix A).

%ﬁ, %{- . Gradient of a function with respect to a scalar or

vector x and matrix K respectively.

Norm-Related Notation:

|| . The Ly norm of a (continuous-time) vector signal z(#):
lell3 = o= < (0)a(t)d.
L, . Space of (continuous-time) vector-valued signals with

finite Ly—norm (square integrable).

M| r : Froebenius norm of a (real) matrix:
IM||p = [Trace(MMT)]%.
o)  G(s) oo
G|z . The H;-norm of a transfer function G(s).
G | : The Ho-norm of a transfer function G(s).

ix



Some Specific Notation Adopted in this Work:

i 7 1 1
A ’ Bkv Ckv ki

ARIt op(Co, X9

ARI(T,,QF((703 Xv ’Y)

ARIpsr(Co, X, )
(LM][)“S'F((j(], )(, 7))

Acronyms:

ARE
ARI
DGKF
LMI
LQ
LQR
LQG
MIMO
RMS
SISO

. State—space matrices of the :

t* plant condition

with k,(=1,2,3.

. Algebraic Riccati Inequality representing the

it H ., —constraint in the general continuous-time

output—feedback multi-plant case (see chapter 5).

. Algebraic Riccati Inequality representing the

‘H,.—constraint in the continuous-time full

state-feedback single-plant case (see chapter 6).

: Algebraic Riccati Inequality (Linear Matrix Inequality)

representing the H,,—constraint in the discrete-time full

state-feedback single-plant case (see appendix D).

: Algebraic Riccati Equation.

: Algebraic Riccati Inequality.

: Doyle, Glover, Khargonekar and Francis.
: Linear Matrix Inequality.

: Linear Quadratic.

: Linear Quadratic Regulator.

: Linear Quadratic Gaussian.

: Multi Input/Multi Output.

: Root-Mean—-Square.

: Single Input/Single Output.



Chapter 1

INTRODUCTION

1.1  Why Mixed H,/H..—Control: Motivation

Clontrol theorists have developed a formidable framework for the analysis and design
of control systems for linear time-invariant (LTT) systems. One of the remaining
problems, however, is that of uncertain and disturbed systems. Mathematical mod-
eling of a physical system provides the basis for the design of feedback controllers.
In order to obtain a simple model of the dynamic process, compromises have to be
made between the fidelity of the system model and the complexity of its model de-
scription. This process invariably implies modeling errors and hence uncertainties
in the model description. Such uncertainties can include neglected high~frequency
dynamics, variables that might change during the course of operation, or parameters
that are just unknown but bounded within a certain domain. Additionally, in many
cases measurements and actuator signals will be noise corrupted. All of these uncer-

tainties have to be taken into account when designing a controller.

In many modern engineering applications the use of lightweight materials has be-
come a necessity to conserve energy, fuel or other resources. This is true especially
in fields such as aeronautics and astronautics or robotics. Modeling of such plants
typically relies on finite element techniques and hence involves high-order plant mod-
els. In order to arrive at a practically implementable controller, the chosen design
method must be able to provide the capability to design fixed—order controllers (that
is, controllers with a prespecified low order regardless of the plant-order). Due to
physical limitations many applications also require the design of structurally con-
strained controllers. Furthermore, few plants will have the same system model over
the whole range of operation. To avoid techniques such as gain-scheduling or adaptive

control schemes, it is desirable to design a single controller that takes into account



various operating conditions. In short, a successful controller design paradigm must
take into account model uncertainties and disturbances and be able to accommodate

requirements such as fixed-order/fixed-structure controllers.

At this point we have to clearly differentiate between two design objectives in the
control-law synthesis. First and foremost the controller must provide robust stability.
That is, the closed-loop system must be asymptotically stable for all considered
uncertainties and disturbances. Once the closed-loop stability has been satisfied, we
may require that additional performance specifications are met as well. Ideally one
would like to design a controller that provides acceptable performance (in some sense)
and guarantees stability for all uncertainties. However, this most general problem of
Robust Performance with Robust Stability is theoretically hard to tackle, even for
very simple performance measures, and is a matter of ongoing research. Instead, the
problem considered in this work is the problem of Nominal Performance with Robust
Stability. That is, the performance measure is optimized for the nominal plant while
stability is guaranteed for a set of bounded uncertainties. Using recent results on
robust performance, this design scheme will be related to the general problem of
Robust Performance with Robust Stability. In this introduction we will make frequent
use of system and signal norms such as H, , H,., and L,. These norms are defined
in chapter 2. The reader unfamiliar with these norm concepts is urged to consult

chapter 2.

H,-theory has a long history. The first step in this development was the for-
mulation of quadratic performance indices for deterministic systems. The Linear
Quadratic Regulator (LQR) design philosophy was the outcome of this research effort.
This framework then was extended to include noise corrupted systems where mea-
surement and system noises were modeled as white-noise processes. This approach
extended the concept of LQ-performance to systems with noise corruption and re-
sulted in the Linear Quadratic Gaussian (LQG) framework. This design method can
‘0 turn be formulated in terms of an Hz—optimal control problem. Stochastic dis-
turbances with distributions other than white noise are easily incorporated into this
framework by the use of shaping filters. Thus, for LQ-type performance problems
in noise corrupted systems with stochastic disturbances of known distribution, H,-
optimal control is the tool of choice. Despite their nice interpretation in terms of

stochastic disturbance rejection and LQ-performance, Hy-optimal controllers have



one important drawback. The plant model is assumed to be known exactly! For this
nominal plant H,—optimal controllers guarantee well documented stability margins.
If the plant is perturbed due to plant parameter uncertainties, however, H,-optimal
controllers may no longer guarantee closed—loop stability. This philosophy is, in its
very essence, a performance-oriented design framework that was not intended to solve
the stability problem inherent to uncertain systems. Future research may develop a
scheme in which the proper choice of weighting matrices in the quadratic cost function
may provide a tool to define robust stability even for this method. Research, however,
has not progressed to this point yet. The H;-norm of linear time-invariant systems is
not applicable to the robust stability problem in a small gain framework because the
H,-norm of transfer functions is not submultiplicative and has no imterpretation as a
transfer function gain. In short, H, provides an excellent framework for performance
considerations and white-noise disturbance rejection as developed in the LQR and
LQG design philosophies. In a more realistic concept, however, mathematical models
are necessarily uncertain and the resulting stability problem is not solvable with this

approach alone.

Starting with the early works of Hurwitz, Schur and Lure, stability theory for
linear time-invariant systems has progressed to modern robust stability approaches
such as Kharitonov-type theorems, parameter—dependent Lyapunov functions, the
concept of stability radii of system matrices and criteria based on singular values
such as the Bounded Real Lemma and the Small Gain Theorem. H,—analysis and
synthesis are based on the Small Gain Theorem and form an effective method to
account for norm-bounded plant uncertainties for the design of controllers that guar-
antee robust stability. The types of uncertainties that can be accommodated include
static parametric uncertainties as well as dynamic uncertainties such as unmodeled
high—frequency plant, actuator and sensor dynamics. The perturbations may be real,
complex, scalar or matrix-valued and hence encompass a wide variety of practical
design problems. However, the H—framework in its present form is concerned with
the design of linear controllers for linear plants. Hence many problems (in particu-
lar problems involving nonlinear uncertainties) cannot be tackled with this method.
Extensions of the H..—scheme to these kinds of problems are currently under inves-

tigation.



The H,,—norm of a system is the maximum singular value of the transfer func-
tion over all frequencies and can be interpreted as the maximum gain of a transfer
function for all Ly-bounded input signals, or as the maximum ratio of the L,-norm
of the system output and the Ly—norm of the system input (see chapter 2). The in-
terpretation of the H,,—norm as the worst—case gain and the fact that the H.,—norm
is submultiplicative make this norm an appropriate mathematical tool for a robust
stability criterion within the framework of the Small Gain Theorem. Although the
Small Gain Theorem provides only a sufficient criterion for robust stability, the Hoo-
framework has become increasingly popular in the last decade. This research effort
is justified by the extendability of Ho,—methods to the Upper Bound p-Problem and
the ease of computation in contrast to other methods. p-theory gives necessary and
sufficient conditions for robust stability. Computationally, however, this problem has
not yet been solved. By convention the term “H.-design problem” refers to the
design of suboptimal H,~controllers. Suboptimal controllers satisfy a prespecified
stability bound in contrast to optimal H.—controllers that actually minimize the
robust stability measure. Ho,—~optimal controllers, however, are often undesirable
due to the occurrence of high gain and large controller bandwidth. Most subopti-
mal Ho.—controllers do not exhibit these disadvantages. For a large class of problems
suboptimal Ho,—controllers are easily computed via the solutions of two Riccati equa-
tions with an associated coupling condition. Unlike for H,, the separation principle
is not valid in the case of Ho,. In summary, Ho, provides a suitable framework for

the incorporation of uncertainty into a controller design concept for robust stability.

On the other hand, possible performance considerations in this framework alone
must necessarily be of limited scope. Let us, for the moment, consider a Multiple
Input/Multiple Output (MIMO) system with m nputs and m outputs. For such a
system, the H,,—norm depicts, by definition, only one point of the maximum singular
value function (as a function of frequency) which is one out of m possible singular
value functions. Considering the limited information that the H,-norm provides
about the overall internal structure of a system, a controller design approach based
on H., will not be able to incorporate LQ performance measures in a way H, does.
Within the framework of pg—theory some approaches in this direction have been for-
mulated nonetheless. The performance measures there are only of the maximum-

singular-value-type and must not be confused with H,-performance specifications.
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H.., is an important tool for robust stability, but it is useful only as a robust stability
constraint in an overall performance—oriented scheme that takes into account all the
other design specifications that a comprehensive controller design paradigm has to

satisfy.

It is obvious at this point that the combination of H, and H. into a mixed
H,/He ~framework incorporates the advantages of both approaches. It allows the
formulation of performance specifications in a more realistic fashion, namely for un-
certain systems. It eliminates the stability problems inherent to the H;-philosophy
and adds the performance aspect in terms of H; to the H,—framework. The re-
sulting approach for the problem of H,-Performance with Ho, —Robust Stability is a
relatively new and promising approach to combine these design specifications into
one comprehensive design concept for a large class of real world problems. These

advantages sparked an enormous research effort in this field in the last few years.

Within the mixed H;/Ho.o—design methodology one has to differentiate between
Nominal H,—Performance with H.,—Robust Stability and Robust Hy—Performance
with H., -Robust Stability. In the first approach the Hy—norm of the nominal trans-
fer is minimized. This approach has the advantage that the H,-problem and the
H..—problem can be considered separately. The latter approach seeks to minimize
the corresponding Hy-norm for the perturbed plant. This problem is still unsolved.
By convention the expression “mixed Hy/Ho,” will refer to the problem of Nominal
H,Performance with Hy,~Robust Stability. Within this methodology two different
directions have evolved. In most cases there will be a conflict between the H,- and
the M., objectives. This means that tighter robust stability bounds will lead to de-
teriorating H,—performance and vice versa. This problem is referred to as the mixed
H,/Hoo—design problem. The goal in this philosophy is to find a controller that min-
imizes the Hy-norm of a given transfer function, subject to an H.,—constraint on
another (possibly different) linear system. This approach is drastically different from
the Simultaneous Hy/Hoo—Optimal Control Problem ([91], [96]), where one seeks a
controller that minimizes the Hy-norm of a given transfer function while simultane-
ously satisfying the desired Ho,~constraint. This type of problem will be solvable only
for special cases. The difference between these approaches is that the simultaneous
Hy ) Hoo-optimal controller will always be Hy-optimal while this may not be the case

for the mixed H,/H.,—design approach.



The problem considered in this research is that of Nominal H, ~Performance with
.., Robust Stability and can now be posed as follows. Under a minimal number of
system assumptions, the problem is to find a controller of fixed order/fixed structure
that minimizes the Hy—norm of a given transfer function, subject to an Hoo—bound
on another linear system. Finally, the design concept should be easily extendable to

the multi-plant case.

1.2 Related Literature

In general this problem formulation involves two subproblems. The Hy—control prob-
lem has been treated extensively in the last two decades and will be reviewed only
briefly. One of the important contributions of modern H,-research is the interpreta-
tion and setting of H, in the frequency-domain ([25], [111]). Most recent advances
can be found in [18], where a generalized parametrization for H,-optimal controllers
has been derived. In most present schemes, the order and structure of the controller
may not be arbitrarily pre-assigned. A recent approach using homotopy methods
can be found in [19]. One method for the gradient-based design of constrained Hy-
controllers was developed in [64]. In particular, the method developed there does
not require an initially stabilizing controller, it allows the design of structurally con-
strained controllers and incorporates the design capability for multiple plants. For
further discussion of nominal H,-related problems the reader is referred to standard
publications such as [66]. Robust H;-design on the other hand is a matter of present
research and some results are slowly forthcoming. As already mentioned, the general
problem of robust H, is not solved yet. All approaches in this direction represent
upper bounds for this robust performance; noteworthy in this respect is the work by
Stoorvogel ([114], [117]). Following a different approach, so—called guaranteed H,-cost
controllers have been investigated in [39] and [83].

H..~theory on the other hand has a rather short history. Although the Small Gain
Theorem was introduced by Zames in 1966 ([136)), it took another fifteen years until
the same author applied this concept to the disturbance attenuation problem for de-
terministic uncertainties. Zames’s 1981 seminal paper ([137}) has to be considered the
beginning of H,~theory. Using the Youla (Q-) parametrization for all stabilizing con-
trollers, it was shown that the H.,~design problem is in general infinite-dimensional

([12], [66]). Based on a formulation of the H—problem in terms of a Hankel ap-



proximation problem, subsequent research derived various frequency—domain solu-
tion methods for the one, two and general four-block problems ([23], [27], [28], [29],
[44], [46], [132], [138]). Computationally these methods were cumbersome and did
not attract much attention in practical applications. The celebrated 1989 paper by
Doyle et. al. ([24], see also [43]) solved the regular suboptimal H.~design problem
and presented a Two-Riccati Ho,-Solution (also termed the DGKF-equations). Fur-
thermore, in this paper it was shown that a suboptimal H—controller - if such a
controller exists — will be of the same order as the plant. The resulting controller
is termed the Central Controller. For properties of the Central Controller such as
pole-zero cancellation as well as lifting techniques for some of the imposed system
assumptions, the reader is referred to [97] and [108]. Additional information on com-
putational issues can be found in [32] and [33]. The ease of computation and the
fact that this controller is of finite dimensions made this method a powerful tool.
In [70] some properties of the Non-Central Controller are examined. Further devel-
opment illustrated the intimate relationship between the ARE-based H.,-approach
and certain game-theoretical problems ([1], [2], [4], [5}, [51], [73], [78], [87], [103],
[120], [125], [126], [127], [129]). Connections between Riccati equation approaches to
the H..—problem, game-theory and quadratic stabilizability have been examined by
Petersen ([77], [78], [79], [80], [81], [82], [84]).

The singular Hoo—problem was solved by Stoorvogel ([113], [132], [116], [119]) in
terms of quadratic matrix inequalities and various rank conditions. A recent extension
of this approach to the reduced-order case can be found in [1 18]. Although compu-
tationally not as attractive as the method in [24], this approach removed some very
restrictive system assumptions imposed in [24]. One of the remaining assumptions
was a rather restrictive constraint on the system zeros. Removal of this assump-
tion requires either the use of perturbation techniques ([97]) or a reformulation of
the problem in terms of Algebraic Riccati Inequalities (ARDs) ([48], [98], [99]). The
significance of matrix inequalities in systems theory was recognized very early and
has sparked renewed interest in this technique over the last few years ([15]). The
characterization of H.,~bounds in terms of matrix inequalities can be traced back
to a paper by Willems ([134], see also [128]). This idea was utilized in a paper by
Zhou and Khargonekar ([141]) and forms the basis for the most advanced Ho-design

methods available at this time. A characterization of all suboptimal He—controllers



has been developed by Gahinet ([35], [36], [37]) as well as by Iwasaki and Skelton
([52], [53]). This method requires the solution of two convex matrix inequalities sub-
ject to a rank inequality. This framework has to be considered more general than
ARE-based methods as it does not require observability or controllability of the con-
sidered plant, only detectability and stabilizability are needed. These assumptions
are required for the existence of a stabilizing controller and hence do not represent a
loss of generality. Parallel to this work Geromel et. al. and Peres developed a similar
technique that resulted in a convex parametrization of all full state—feedback subopti-
mal H,,—controllers ([38], [40], [41], [76]). Theoretically these results give a complete
characterization of all full state-feedback and reduced-order output—feedback Hoo—
controllers. The computation of solutions for matrix inequalities, however, remains
still a matter of current research ([14], [15], [100], [103]). The number of publications
related to the robust stability problem is extensive. The above citations represent
only the most important recent papers. For a comprehensive list of publications in

the last few years the reader is referred to [21].

A very general framework for the mixed Hz/H,~design problem has been devel-
oped by Ridgely ([89]) as well as Steinbuch and Bosgra ([112]). The approach utilizes
a set of Lagrange multipliers to append the H,,—constraint in terms of an ARE to
the H,—performance cost. Corresponding gradients give necessary conditions for the
derivation of a mixed H,/Hoo—controller. Gradient—based methods are used to com-
pute the controller. The approach incorporates many important features such as
fixed-order/fixed—structure controllers. However, in addition to a set of rather re-
strictive system assumptions, this approach requires an initially stabilizing controller
that satisfies the desired H.., bound. Also, due to the H,,—characterization by an
ARE, this problem formulation requires the corresponding Hoo—problem to be regular

(non-singular, [24]).

A special class of systems has been considered by Bernstein and Haddad. For
these systems the same outputs for the H; and He-criteria, but different distur-
bance input channels are assumed. For these systems a scheme has been developed
by Bernstein and Haddad ([6], [7], [8]). In this approach an upper bound for the
corresponding Hz-norm is minimized while the specified Hoo—constraint is satisfied.
The computation of fixed—order controllers in this scheme involves the solution of

up to six coupled Riccati equations. Only homotopy methods are available to solve



such a computationally challenging task ([9]). The dual problem has been solved in
[26] and [140]. Subsequently it has been shown in [135] that the conditions derived
in [6] and [26] are necessary and sufficient. For the case of full state-feedback, the
above idea can be formulated as a convex optimization problem using the controller
parametrization introduced in [38] and a constraint in form of a convex matrix in-
equality. This particular problem has been investigated by Rotea, Khargonekar and
coworkers ([56], [58], [91], [93], [94]).

Yet another approach to mixed Hy/Hoo—design is based on the y-Entropy of a
system ([68], [69], [71]). This function is finite only if the Ho,—constraint is satisfied.
In this case the negative function value represents an upper bound for the Hz-norm
of this system. Unfortunately this formulation is applicable only if the Hy—objective

and the H,,—constraint are related to the same transfer function.

1.3 Outline of the Report

This introduction is followed by preliminary definitions and results in chapter 2.
There relevant norms are defined, uncertain systems and their representation as well
as the Small Gain Theorem and various types of H.,—~bound characterizations are
presented. In chapter 3 the actual problem definition is stated along with system
assumptions and state-space representations of the considered plants. Chapter 4
provides an introduction to matrix inequalities and their relevance in control sys-
tems theory. A new differentiable scalar cost function is defined that represents the
corresponding Ho,—constraint in the overall optimization scheme. Some properties
and possible applications of this cost function are discussed. A new approach to the
multi-plant He,—design problem based on this new cost function is then formulated
in chapter 5. The related optimization can be performed either as a constrained opti-
mization or via a penalty/barrier function approach. A discussion of these algorithms
and some numerical advice are included in this chapter. An extension of this scheme
naturally leads to the formulation of the multi-plant Hz/Ho,~design problem in terms
of the defined scalar cost function. This design problem is considered in chapter 6.
The state—feedback single-plant case with an upper bound for the corresponding H,-
cost and identical disturbance inputs for the Hy and Heo—criteria as treated in [58]
can be found in this chapter as well. This chapter is followed by concluding remarks

in chapter 7 and some comments on possible extensions of the presented scheme as
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well as an outline of potential future research directions in chapter 8. In appendix
A auxiliary matrix results that are required for various proofs are presented along
with the theoretical framework necessary for the computation of gradients for all the
cost functions that are defined throughout this report. Explicit gradient expressions
for the relevant cost functions can be found in appendix B. In appendices C and D
it is shown that the scalar cost function can also be used for H,-constrained opti-
mization problems where the performance measures are not Hy. In appendix C' the
Minimum Gain Problem subject to an H,,~constraint for the full state—feedback case
in the continuous—time domain is examined. Appendix D shows the applicability
of the presented scheme to Ho—problems in the discrete-time domain. As an Heo—
constraint in the discrete-time domain can be represented via an ARI, the proposed
' cost function can also be used to impose the H,,—constraint. The objective is the
nominal Lq-norm of the closed—loop A-matrix which has interpretations in terms of

time—domain constraints on the state and the control vectors.

Except for the results presented in appendix D, the formulation and treatment of
the Ho,—design problem and the mixed H;/H~problem are cast completely in the
continuous—time domain. An exception to this rule was made only to demonstrate

the applicability of this scheme to discrete-time problems.

In appendix E the accompanying MATLAB Ho,-design software based on the
results in chapter 5 is described in details. Usage of the software is illustrated by ex-
amples and possible causes for non—convergence of the algorithm are also discussed.
Although the same algorithm has been utilized for the mixed Hy/H—design exam-
ples, the mixed H,/Ho—design software still requires the adjustment of parameters
in intermediate steps of the algorithm. Hence, for this reason it is not included in
this appendix. Note that in the appendix E a different notation has been adopted
for the description of the open—loop systems. The notation follows closely the stan-
dard notation used in the literature for the pure Ho,—problem and it differs from the

notation used in the body of this report.

The following notational convention is used throughout this report. In general
signal dependency on time will be shown explicitly while a possible frequency de-
pendency is omitted. The context will identify whether the time-domain or the

frequency-domain is considered. Furthermore, for linear time-invariant systems the
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term “asymptotic stability” refers to stability over an infinite time-horizon and hence

exponential stability of the system under consideration ([16]). Similarly, a matrix M

is asymptotically stable if the real parts of every eigenvalue of M is negative. Con-

versely, a matrix M is “antistable” if —M is asymptotically stable. The term “mode”

is equivalent to an eigenvalue of a matrix. Also, a linear time-invariant system is

minimal if it is both observable and controllable. For brevity the term “transfer

function” is generally used to refer to transfer function matrices in the case of multi-

input/multi-output systems. The remaining abbreviations can be found either in the

glossary or are defined in the body of this report and are fairly standard.

1.4

Contributions

. A new scalar time—domain cost function is defined that allows the representation

of H,.-constraints in terms of a scalar constraint. The defined cost function is
continuous and differentiable. Explicit gradient expressions are provided and
hence standard nonlinear gradient-based software may be applied to solve the
suboptimal multi-plant H,,~design problem. An iterative scheme is presented
to numerically solve the associated optimization problem. Furthermore the
possible extension to a multi-plant H—optimal controller design method 1s
outlined. The considered plants need not be of the same order and for each plant
a different set of input/output vectors may be defined that will be subject to
the H..—constraints. The developed scheme includes features such as multiple
plants, multiple H,,—constraints, full state—feedback, strictly proper and proper
controllers with fixed—order and/or structure. The initial controller guess is not
required to be stabilizing. Furthermore the system assumptions are the least

restrictive.

Based on the proposed cost function and hence the scalar representation of
H.—constraints a new approach for the multi-plant problem of Nominal H,-
Performance with Ho,~Robust Stability is formulated. For multiple plants the
H,—criterion is a weighted sum of the individual H,-norms of each plant condi-
tion. Due to the differentiability of the Hy—criterion the numerical treatment is
equivalent to that of the pure Ho,-design problem including the same features

and capabilities as described above.



3. The scheme is applicable to problems where other performance criteria are

desired and to H,,—constrained problems in the discrete-time domain. The
Minimum Gain Problem subject to an He—constraint for the state-feedback
case in the continuous—time domain and the H.,—constrained control problem
with time—domain constraints in the discrete-time domain have been shown to

be solvable with the presented approach.

The proposed cost function is applicable to enforce any kind of matrix constraint
in the form of a scalar inequality constraint as long as the matrix constraint
under consideration is expressible in terms of a real symmetric differentiable
matrix inequality. This property allows the application of the developed scheme
to many other constrained optimization problems. In particular it is shown
that the proposed cost function is convex if the underlying matrix inequality is

convex and hence convexity of the original constraint is preserved.



Chapter 2

PRELIMINARIES

2.1 Norm Definitions

In the following G := (A, B,C, D) will denote the state-space realization of a LTI

system (& with w(¢) as input and z(t) as output.

(2.1)

- i(t) = Ax(t)+ Bw(t), z(0)=wxo
] 2(t) = Cx(t) + Dw(t)

The corresponding transfer function from w(s) to z(s) in the frequency-domain is
denoted by G(s) = (sl — A)'B+ D for zo = 0. One can define a multitude
of norms for LTI systems. Among these, the H, and H,,-—norms have become
the most widely used system norms due to their nice mathematical properties and
intuitive interpretations. Note that the H;-norm is defined only for strictly proper

asymptotically stable systems, the H;-norm of proper or unstable systems is infinite.

Definition 2.1.1
Consider a strictly proper asymptotically stable LTI system G := (A, B,C,0) with
corresponding transfer function G(s), then the Hy-norm ||G||; is defined as follows.

IGll. = \/;ace(/oo CeAtBBTeATt(CTdt) (2.2)
a

= \/Trace(/oo BTeATtCTCeAt Bdt) (2.3)
| 0

9. Let w be white noise signals with unit power spectral density Syw(jw) = 1, then

Gl = \/Trace[g;/oo Gjw)GT (—jw)dw] (2.4)

— 00
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=J etz (2.5)
= lim /E[2T(ts)z(t))]. (2.6)

ty—oc

The characterization of |GIl; in terms of (2.2) and (2.3) gives rise to the familiar
computation of this norm in terms of the controllability or observability grammians.
Equations (2.4), (2.5) and (2.6) illustrate the interpretation of the H;-norm in the
frequency—domain in terms of stochastic white-noise signals as driving inputs. For
this type of disturbance input, the Hy-norm is an appropriate measure for the energy
(RMS value) of the output. In particular (2.6) shows that ||G]|; can be computed
via a finite-time cost function {/E[zT(¢;)z(t;)] in the limit as t; — co. In a practical
implementation one need not go to the actual limit ¢y — oco. Depending on the
eigenvalues of the system, a large but finite t; would adequately approximate the
true H,—norm of the system. This fact has been utilized for a very general design
algorithm in [64].

The H,,-—norm, on the other hand, is a gain norm. As with the H,-norm, there

are interpretations in the time and frequency-domains.

Definition 2.1.2
Consider an asymptotically stable LTI system G := (A, B, C, D) with the correspond-
ing transfer function G(s) and xo = 0, then the Ho,—norm |G|« is defined as follows.

|Glle = sup lim \]ffwT(t) z(t)dt (2.7)

w, {wlla=147%° (t)w(t)dt
Nzl |

“wllz—l HU’Hz (2.8)

= sup AT (—jw)G(jw)] (2.9)

- sLuIJPO'[G ]w)], (2.10)

where M.) and &(.) are the mazimum eigenvalue and marimum singular value of the

arqguments respectively.

Physically this norm is the worst—case ratio of output energy to input energy for input

signals with bounded energy. Very interesting in this respect is the fact that periodic



signals have unbounded energy and hence are not included in the above time—domain
definition. That is, the supremum in equations (2.7) and (2.8) will not be achieved

for the considered class of disturbance signals w(t) € L,. In general we have
gt ¢
/sz(t)z(t)dt < ||(;||§0/’wT(t)w(t)dt 2o =0, Yw(t) € Ly, Vi;>0. (211)
0 0

Reference [26] contains a more in-depth discussion along these lines. The frequency-
domain definition shows that this norm is the worst—case gain over all frequencies.
The class Ly of disturbance signals for which the H,,—norm is defined, makes the
combination of H, and M., so attractive. General L,—disturbances do not have nice
interpretations in the H, framework, stochastic noise signals on the other hand have
no relevance in Hoo—theory. In addition to the usual properties of operator norms,

the H,,-norm is submultiplicative. That is,
|G H oo < Glloo 1 H |l ' (2.12)

for two transfer functions G(s) and H(s). Operator norms that satisfy this inequality
are also called generalized operator norms. The above inequality does not hold in
general for the Hy-norm. Submultiplicativity is the key feature of the H,,—norm that

allows its application to the robust stability problem via the Small Gain Theorem.

2.2 Equivalent Representations of Hy,—Constraints for LTI Systems

Even though there is no analytical “one-step” solution for the most general ‘H,-design
problem, efficient solutions for this design strategy with structurally constrained and
fixed—order controllers have been developed ([64]). The true problem associated with
the general H,/Ho,—design task is that of the ‘H..—constraints. All present H.,—design
approaches and analysis methods are, in one way or another, based on the representa-
tion of an H, —constraint in terms of the eigenvalues of a certain Hamiltonian matrix
or matrix constraints such as LMI’s ARE’s or ARI’s. The characterization of an
H...—constraint in terms of a matrix inequality such as an ARI or a LMI is the central
tool for the design method in this work. In this section some of the close connec-
tions between these different Hoo—representations as well as properties of ARI’s and

solutions to ARI’s are reviewed.
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Lemma 2.2.1 (Frequency Domain)
Consider an asymptotically stable system G := (A, B,C, D), then ||Gllo < v if and
only if

v — GT(—jw)G(w) > 0. (2.13)

This lemma follows directly from the frequency-domain definition of the H,,-norm
and needs no further proof. It simply states that all singular values (as a function of
the frequency w) are smaller than 4 for all w. This lemma is very intuitive and shows,
along with the frequency-domain definition of the H,,—norm, that the Ho—norm of
a system is a basic system property that does not depend on a particular state-space
representation of ((s) or properties such as controllability or observability. The
following lemma illustrates the connection between the time-domain definition of the
H..-norm and its frequency—domain counterpart. For further reference the following
abbreviations are introduced: R = (4% — DT D), § = (v*] — DDT). 1t is easily

verified, that R and S satisfy the following relations.

R'DT = DTS and
I+ DR'DT = ~257N.

Hence in the following equations, R and S are interchangeable using these identities.

Lemma 2.2.2 (M, [11])
Consider a system (G := (A, B,C, D‘) with A asymptotically stable, then |G|l < v if

and only if M, has no purely imaginary eigenvalue where

A+ BRDTC BR-1BT
sz( +BRODTC ABR ) (2.14)

—ACTS1C —[A+ BRT'DTC|T

The relation between lemma 2.2.1 and lemma 2.2.2 is easily established by the
fact that M, is the system matrix of the state—space representation for [v2I —
T (—jw)G(jw)]™". It can be shown that v*I — GT(—jw)G(jw) has a spectral fac-
torization 721 — GT(—jw)G(jw) = HT(—jw)H(jw) if and only if M, has no purely
imaginary eigenvalue jw. Thus y2/ — GT(—jw)G(jw) > 0 is satisfied if and only

if (jwl — M,,) is non-singular for all jw, which in turn is equivalent to ||(7|l. < 7.
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Hence the computation of the H,~norm of a system is reduced to a y-iteration and a
corresponding eigenvalue computation (see [11]). So far, however, no design method
is based directly on this property of M.. The following lemma illustrates the connec-
tion between the time—domaiﬁdeﬁnition of the Ho,—norm and its frequency-domain

counterpart.

Lemma 2.2.3 (LQ-Cost, ARE, [125])
Consider an asymptotically stable system GG := (A, B,C, D) with (A, B) controllable,
(C, A) observable and v > a(D), then |G|l < v if and only if

o0

sup [2T(t)2(t) — YT (Hw(t)]dt = sup Joo(w) < oo. (2.15)
wELy JO we€L,

If the above supremum is finite then the worst—case disturbance wo(t) is given by
wo(t) = R7DTC + BTY]x(t), - (2.16)

where Y = YT > 0 is the unique symmetric positive-definite solution to

ARE(Y) = 0, (2.17)
ARE(Y) := [A+ BR'DTCI"Y + Y[A+ BR'D"(C)]
+YBR'BTY +4*CTS7'C (2.18)

such that A+ BR™'(DTC + BTY) is asymptotically stable and

max Joo(w) = 2! Yi,. (2.19)
w€ L,

It comes as no surprise that the Hamiltonian matrix associated with this two-point
boundary problem is related to M., as defined above via a similarity transformation.
Hence the Riccati equation (2.17) will have a finite symmetric positive-definite solu-
tion Y if and only if the maximization problem has a finite solution. Such a solution
exists if and only if M, has no jw-eigenvalues which in turn is equivalent to the above
H..—bound being satisfied. In general there is a number of matrices Y that satisfy
ARE(Y) = 0 but only one positive-definite matrix ¥ that satisfies ARE(Y) = 0
such that A+ BR™'Y(D7TC + BTY) is asymptotically stable. This matrix Y separates
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the spectrum of M, into a stable and anti-stable part represented by the eigenval-
ues of A + BR"(DTC + BTY) and —[A + BR—‘(DTC + BTY)]T respectively. This
lemma forms the basis for all ARE-based methods to H.,—synthesis. In particular
the DGKF solution to the Ho—problem is based on this lemma. Equivalent game
theoretical approaches (see e.g. [125], [126], [127]) utilize the characterization of an
H...~bound in terms of the above LQ-problem for various control feedback strategies.
The obvious relation between the time—domain definition of the H,,—norm and lemma
2.2.3 can be established via a linear fractional optimization problem. The reader is
referred to chapter 6 in [20] for more information on this issue. Lemma 2.2.3 is based
on variational optimization ideas and invariably invokes the basic assumptions of
controllability and observability.

Note at this point that the “if-and-only-if” relationship between ||Gll., < ¥ and
the existence of a Y such that ARE(Y) = 0 with A + BR™'(DTC + BTY) asymp-
totically stable is not dependent on its derivation from a variational problem. The
considered maximization problem is only a tool to derive this equivalence. Further-
more, if the above controllability condition (or, alternatively observability of (C, A))
is not satisfied, then the corresponding ARE-solution Y can in general be positive
semi-definite (see e.g. [17], [43]).

The next lemma provides a very general necessary and sufficient criterion for

|Glloo < 7 in terms of an ARIL

Lemma 2.2.4 (ARI, [141])
Consider an asymptotically stable system G := (A,B,C,D) and v > &(D), then
|Glloe < 7 if and only if there exists a symmetric positive-definite X such that

ARL(X,) < 0, (2.20)
ARL(X)) = [A+ BR'DTC)TX, + X,[A+ BR'D"C]
+X,BR'BTX; +~y*CTS'C. (2.21)

This lemma can be derived directly from equation (2.13) and forms the basis for most
recent Hoo—design methods. An explicit proof can be found in [7] or [141]. Note that
the definition of ARL(X;) in (2.21) implies that ARI;(X1) is a square matrix and
hence the eigenvalues of ARI;(X;) are well defined. In the following discussion we will

frequently use this fact. In general it is harder to find a solution to a matrix inequality
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than a solution to a Riccati equation. There'is no “one-step” method available to find
solutions for such inequalities. On the other hand, this lemma provides a very general
means to determine whether an H,,—bound is satisfied or not. In particular, lemma
2.2.4 does not assume any system properties other than stability. Also, there is not
one unique solution to such an inequality. Rather, there is a whole set of possible
solutions. It is important to note at this point that this inequality characterization
can be viewed as finding a matrix X; such that ARI1(X;) is negative—definite or in
terms of the eigenvalues of the ARI (X)), that is ARI(X1) is asymptotically stable.
As the matrix ARI;(X}) is a real symmetric matrix, negative definiteness is equivalent
to stability of ARI(X,). Hence any matrix inequality (or matrix constraint) of the

form

T[ARL(X))TT <0, |T|#0, or (2.22)
T[ARL(X)]T' <0, TTT =1, or (2.23)
T ARL(X,))T™" asymptotically stable, |T|# 0 (2.24)

is equivalent to the ARI criterion in lemma 2.2.4. The constraint TTT =1in(2.23) is
necessary to maintain symmetry of [ ARI(X;)]T~". This fact as well as the Schur
complement form of block-structured matrices give rise to some equivalent matrix
inequality formulations as presented in the following lemma. They do not form new

criteria but rather provide different forms of AR (X}).

Lemma 2.2.5
Consider an asymptotically stable system G := (A, B,C, D) with v > (D), then the

following statements are equivalent:
1Glloe < . (2.25)

2. There is a system representation G := (A, B,C, D) such that

ARL(T) < 0, (2.26)
ARI(T) = [A+ BR'DTC]T+[A+ BR'DT()
+BR'BT + 42CTS71C, (2.27)
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where A = TAT™', B=TB, C = CT" and D) = D for some non-singular

transformation matriz T. Furthermore, T can be taken to be upper triangular.

3. There is a real symmetric positive semi-definite Z; such that

ATZy+ ZVA+ CTC  Z,B+CTD

LM]](Z]) = ( BTZ] + DT(j' _(721 _ DTD)

) < 0. (2.28)

4. There is a real symmetric positive semi—definite Z, such that

ATZy + Z,A+CTC Z,B CT
LMIy(Z,) := BT Z, —~I DT | <. (2.29)
C D —~I

Proof: The equivalence of statements 1 and 2 is a variation of theorem 1 in [112].
Obviously, if (2.25) is true, then there is a symnetric positive-definite solution Xj to
ARI(X;) < 0in (2.20). Now let T be the (non-singular) Cholesky factor of X; such
that X; = T7T, where T is an upper triangular matrix. Now, ARI1(X7) < 0 if and
only if (TT)"'ARL(X,)T™' < 0 for any non-singular matrix 7. Multiplying (2.21)
with (77)7! from the left side and with 77! from the right side yields the desired re-
sult, namely equivalence of equations (2.20) and (2.26). Equivalence of statements 1,
3 and 4 is easily shown via repeated application of the Schur complement formula (see

Appendix A) for block-structured matrices and is a standard result ([36], [37], [53]). B

Equation (2.26) shows that a desired Ho,—bound can be tested via a search over
all nonsingular transformation matrices T', or, alternatively over all possible system
realizations of (/(s). In general the above inequality characterizations of an Ho.—
bound will give rise to different numerical schemes to enforce a desired H,—-bound.
Hence they are important for the numerical treatment of the corresponding He.-
bound problem in the mixed H,/H.,—design. The inequality formulation in equation
(2.28) has the advantage of being linear in Z; and 4*. The characterization (2.29)
is linear in Z; and 4. For that reason (2.28) and (2.29) are also referred to as Lin-
ear Matrix Inequalities (LMI). However, they are linear in all involved parameters

only if the system matrices are assumed to be constant and independent of possible



other variables. When designing an H,,-controller based on the closed-loop Ho.-
bound characterization in terms of the above LMI’s, the matrices A, B, and D in
(2.28) and (2.29) will be functions of the controller. Unfortunately, in the general
output—feedback case this dependency of A, B, C and D on the controller parameters
will destroy linearity of the above matrix inequality, and ultimately the convexity
of the corresponding optimization problem as will be seen later. Further criteria for
|GGl|oc < 7y are the Bounded Real Lemma in various forms ([128]) as well as a criterion
based on the concept of entropy ([71]). They are not directly relevant to the results

in this work and hence are omitted here.

Now let us turn to some properties of possible solutions X; for ARI(X;) < 0.
These properties will prove valuable for the numerical implementation of the Ho—
and mixed H,/H,—design algorithms. To this point let us assume that a particular
matrix X7 = (X7)7 > 0 does indeed satisfy ARI1(X7) < 0. Then there exists a

symmetric positive-definite matrix ¢ such that

[A+ BR'DTCI"X; + X;[A+ BRT'DTC)+ X;BR'BTX; +4*CTS7'C +Q =0,
(2.30)
where R = (v21 — DT D) and S = (4*] — DD7) as defined previously. Alternatively

one can write (2.30) as follows.
ATX 4 XA+ [XIB+ CTDIRVX;B+C'D" +CTC +Q =0. (2.31)

If X; >0, (X7)"!is well defined. Now, by use of the above identities on R and 5,

yet another form of (2.30) can be derived.

(X7)"HA+ BDTST'CIT + [A+ BDTSTICYX) ™!
+ AHXHTICTST'C(X:) '+ BRT'BT +Q =0, (2.32)

where Q = (X7)'Q(X;)~!. These equations form the basis for the proof of the

following theorem.
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Theorem 2.2.1
Given a system G = (A, B,C, D) with v > a(D) and |G|l < v and a symmetric
positive—definite matriz X] = (X:)T > 0 such that ARII(X]) <0, then the following

statements are true.

[. The system matriz A is asymptotically stable.

2 Ape=A+ BR'DTC = A+ BDTS™'C 1s asymptotically stable.

I8

9. Y < X3, where Y solves ARE(Y) =0 in lemma 2.2.5.

4. L, < X7, where L, solves

ATL,+ L, A+CTC =0. (2.33)
3. l:o < X7, where l:o solves
AT Lo+ LoAgue +12CTSTIC = 0. (2.34)

6. L. < (X7)™!, where L. solves

1.AT + Apel.+ BRT'BT =0. (2.35)

aur

Proof: ARI{(X}) < 0 implies the existence of () > 0 and Q > 0 in equations (2.30),
(2.31) and (2.32) respectively. Now, with

(X;B+CTDIR'X;B+CTDI" + CTC +Q >0,

the pair (A, [X;B+ CTDIR™'[X;B + CTD|T + CTC + Q) is observable and hence
a standard Lyapunov argument applied to equation (2.31) shows that A must be an
asymptotically stable matrix. This proves statement 1. Assertion 2 is shown in the
same way by considering equations (2.30) or (2.32) respectively. A proof for statement
3 can be found in [85] and is omitted here. Statement 4 can be proved by subtracting

equation (2.33) from equation (2.31) to yield

ATIX? = Lo) + (X7 = LJA+ [X;B+ CTDIR[X;B+CTD]" + Q@ = 0.



23

With A asymptotically stable, it follows directly from Lyapunov’s theorem that
X7 — L, > 0 and hence statement 4. Statements 5 and 6 can be proved in the
same way by use of the ARE’s (2.30) and (2.32) and the Lyapunov equations (2.34)
and (2.35) respectively. B

Assume for the moment that the matrices A, B, and D represent a closed-loop
system (G(s) with a certain controller C(s) in place. Then, if a matrix X; has been

found such that ARI;(X]) < 0, two results follow immediately:

I ||Galleo < v by lemma 2.2.4, and
2. Gy :=(A,B,C, D) is an asymptotically stable system by theorem 2.2.1.

Hence, an H,, or mixed H,/H.,~design paradigm based on the ARI-characterization
of the corresponding H.,—constraint of the closed-loop system need not enforce sta-
bility explicitly. Closed-loop stability will naturally follow once a controller C'(s) and
a matrix X7 have been found such that ARI;(X;) < 0. The other results in theorem
2.2.1 will be valuable for various aspects in the numerical formulation of the proposed
algorithm for the mixed H,;/H.,—design. Note however, that in contrast to lemma
2.2.3 stability of A+ BR™Y(DTC + BT X}) cannot be concluded (and is not necessary
any more) from X7 satisfying ARL(X7) < 0. This is due to the fact that theorem
2.2.1 is not based on an optimization problem. The properties of X7 in theorem 2.2.1
are based on the frequency-domain inequality (2.13), the equivalent ARI representa-
tion in (2.30) and the Lyapunov theorem. No optimal control concepts as in lemma
2.2.3 have been utilized.

To further illustrate the properties stated in theorem 2.2.1, an example plant 1s

considered. The system matrices are as follows.

—1.004 —5.438 0 0.438 1 —0.004 —5.438

| —0.004 —3.438 0 0.438 s |! —0.004 —5.438
~0.008 —10.876 —4.000 0.876 |~ | 1 —0.008 —10.876 |’
—0.218 7.743 0 —4.894 0 —0.218 7.743

- 1 11 0 Ho [0 0 0
’ —0.004 —5.438 0 0.438 |’ L0 —0.004 —5438 |
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This plant is asymptotically stable and the corresponding H.,—norm of the system
G = (A,B,C,D) is |G|l = 5.4378. Choosing v = 5.7000 > ||G||e, one particular
solution X7 = (X7)7T satisfying ARL(X) <0 is

1113 —1.047 2422 3.575
—1.047  7.348 —1.494 —1.880

X = | . (2.36)
2422 —1.494 39327 56.791
3.575 —1.880 56.791 82.928

= %
|

The eigenvalues of X7 are 0.2869, 0.8215, 7.4424 and 122.1650 and hence X| > 0.
The corresponding eigenvalues of ARL(X7) are —0.1373, —1.0137, —1.6807 and
—781.1729, implying that the ARI-inequality constraint AR (X}) < 0 is satisfied.
It can furthermore be verified that all conditions in theorem 2.2.1 are satisfied as
well. However, the eigenvalues of A + BR™Y(DTC + BT X7) are 0.0417 &+ 1.2607;
and 0.0217 + 0.0732j, respectively. Hence the matrix A + BR™Y(DTC + BTX?) is
completely antistable. That is, all eigenvalues of A + BR™'(D7C 4 BT X}) are un-
stable. This fact represents a departure from the ARE-characterization as in lemma
2.2.3, where the solution Y of ARFE(Y') = 0 needs to satisfy the additional constraint
that A+ BR™1(DTC + BTY) be asymptotically stable. This is not necessary for the

ARI-characterization, as exemplified above.

Let us expand further on this property. Assume an asymptotically stable system
G = (A, B,C, D) with ||GG]|cc < . Then, by lemma 2.2.3 there is a symmetric pos-
itive semi-definite matrix Y, (or positive definite Y,, depending on the observability

and controllability of the pairs (A, B) and (C, A) respectively) satisfying
[A+ BR'DTCVTY, + Y,[A+ BRT'DTC]+ Y,BR'BTY, + y2CTS7'C = 0 (2.37)

such that A+ BR™'(DTC + B7TY,) is asymptotically stable. Now consider possible
solutions to the ARE

[A+ BRT'DTCIT(Y, + dY (e)) + (Y, + dY (e))[A + BR™' D™ (]
(Y, +dY(e)BR'BT(Y, + dY(e)) + v*CTST'C + el =0 (2.38)



for some small positive €. From (2.37) and (2.38) it follows directly that dY(¢)

satisfies
[A+BRTY(DTC+ BTY,)|TdY (e)+dY (e)[A+ BRT'(DTC + BTY,)| 4+l = 0 (2.39)

where the quadratic terms in dY (¢) are neglected. From this Lyapunov equation one
can conclude that, with A + BR™Y(DTC + BTY,) asymptotically stable, dY(g) =
[dY (€)]T > 0 is continuous in €. Thus the eigenvalues of A+ BR™'[DTC + BT(Y, +
dY (£))] are continuous in € as well. Hence one can choose € such that A+ BR™'[DT (" +
BT(Y,+dY (¢))] remains stable. However, dY (¢) > 0 implies (Y, +dY (¢)) > 0. Hence
there exists a symmetric X7 = (Y, + dY(e)) > 0 such that ARL(X}) < 0 and A +
BRY(DTC+BTX?)is asymptotically stable. Although the above example has shown
that in general there may be matrices X7 that satisfy the inequality AR (X)) <
0 without this additional stability requirement, the above derivation shows that,
whenever the H,-bound is satisfied, there will also exist a symmetric, positive—
definite solution to the ARI that also satisfies the additional stability constraint as
imposed for the ARE solution. These observations are summarized in the following

corollary.

Corollary 2.2.1
Assume an asymptotically stable system G := (A, B,C, D) with ||G]|oc < 7. Then the

two following statements are true.

1. There exists a X7 = (X7)T > 0 such that ARI;(X}) < 0.

2. There exists a X = (X2)T > 0 such that ARI(XP) <0
and A+ BR™Y(DTC + BT X?) is asymptotically stable.

So far only strict H.,—bounds have been considered in this discussion, i.e., only
the case |G}l < 7. As a final point in this section let us consider the case where
¥ = ||G]lee and its implications for possible solutions to the above ARDI’s. In the
following, assume that A is asymptotically stable and that the necessary condition
v > 6(D) for |G|l < v is satisfied. In this case the strict inequality (2.13) has
to be replaced by 72/ — GT(—jw)G(jw) > 0. Under these circumstances the proof
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for lemma 2.2.4 in [7] is still applicable and it immediately follows that AR (X7})
will be negative semi-definite for some X;. However, many of the above conclu-
sions about positive definiteness of X} or stability of A as in theorem 2.2.1 may no
longer be true if ARL(X;) < 0. To illustrate these problems, consider equations
(2.30) and (2.31), but now for a @ that is positive semi-definite. If X7 > 0 and
ARL(X7) <0 then A is asymptotically stable. However, X7 need not be positive
definite in this case. Depending on various observability /controllability conditions,
X7 may be positive semi—definite or, by similar considerations on (2.32), infinite in
some modes. In general, at ¥ = ||G|| most of the nice properties of ARE’s and ARI's
break down and many important implications become inconclusive. In a numerical
implementation this case can be circumvented by forming an “e-perturbed” ARI of

the form ARI(X;)+el < 0 which effectively enforces the strict inequality |G|l < 7.

2.3  Uncertain Systems: Stability and Performance

At this point let us consider the problem of robustly stabilizing an uncertain sys-
tem before adding performance considerations to this scheme. This problem is most
generally represented in Figure 2.1.

Yperop(s) s the open—loop perturbed or uncertain plant model for which a linear
stabilizing controller ('(s) has to be designed. Uncertainties in the plant description
may arise from a variety of sources. These can be neglected dynamics, parametric un-
certainties such as component tolerances, model parameter uncertainties or variables
that change over the course of operation as well as neglected nonlinearities. Except
for some static nonlinearities such as saturated actuators, general nonlinearities can-
not be handled with the current H,,~theory. A comprehensive description of these
issues can be found in [13]. Mathematically these uncertainties may be represented
either in the state—space form as uncertain entries in the respective system matrices,
or in the frequency-domain as input and output multiplicative system perturbations

A;(s) and Ag(s) respectively, or as additive system uncertainties A,(s) as follows.

2per,op(s) = Enom,o;u(s)[l + A,(G)] (240)
ZPRT,OP('S) = [I + AO(S)]Enom,op(S) (241)
Zper,op(s) = E'nam,,op(s) + Aa(q) (242)
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u Lper.op(S) Y

Figure 2.1: Stabilization of an uncertain model.

Erom.op(s) represents the nominal linear open-loop model. Without any performance
objectives, the goal at this point is to find a controller that stabilizes the plant
Yoerop(s) for all permissible perturbations A;(s), Ag(s) or A,(s). This amounts to
stability robustness with respect to uncertainties in the input or output path or to
additive uncertainties. H.,~theory requires the uncertainty to be represented in a
form that is termed “perturbation feedback form” or “H,-standard form”. This
representation assumes that all uncertainties are lumped into one uncertainty block
A,(s) that is connected to the nominal plant in a feedback loop as shown in Figure
2.2.

This representation is very general and forms the basis for the application of the
Small Gain Theorem to the analysis and synthesis problem in an H,,—setting as well as
for the definition of internal stability according to Desoer and Chen and Nyquist-like
stability criteria. General frequency—domain uncertainties such as A;(s), Ag(s) and
A, (s) are easily converted to this form. If one starts with a state-space description
of the uncertain open-loop system with parametric uncertainties, this conversion will
not always be possible. One way to design robustly stabilizing controllers for this case
can be found in [79] and references therein. However, posing the robust stabilization

problem in the Ho—standard form has the advantage that it is extendable to necessary
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Enom,op(s)

Figure 2.2: Uncertainty representation in H.,-standard form.

and sufficient conditions for robust stability, namely u-theory. If the state-space
matrices of the open-loop system are linear in the uncertain parameters, such a
feedback configuration is always possible. This is not necessarily true for the case of
multiple uncertainties. Engineering practice has shown that this type of uncertainty
description is applicable to a wide range of problems, however. In the following it
is assumed that a system representation of the uncertain plant in the H—standard
form exists. Ho—theory in its present form requires that A,(s) be stable. A first
attempt to include unstable uncertainties A (s) into a singular-value based robust
stability framework can be found in [54], but the presented theory has to be considered
incomplete at this point. Furthermore, the H,-methodology assumes no internal
knowledge of the uncertainty block A,(s). Structured A,(s) cannot be incorporated

into the pure H,—design philosophy. An extension of H,,~theory, namely g-analysis
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and design, has to be applied to this type of problem. This subject, however, is
not part of the considered research objectives. Henceforth it is explicitly assumed
that A(s) is a stable transfer function for which no internal structural knowledge
1s assumed. Let us assume that a controller has been designed and connected to
the open-loop system A,(s) to form the closed-loop system ,,0,, «1(s). The question
arises, whether the overall system, including the uncertainty block A,(s), is stable.

This question is most elegantly answered by the Small Gain Theorem.

+ y
Wy _’d)—’ Enmn,cl(s) - Y2

Figure 2.3: Stability and small gain.

Consider an interconnection of these systems as in Figure 2.3 with some auxiliary
inputs w;(s) and wy(s). This system is internally stable if and only if the four
transfer functions from w;(s) to e;(s), ¢, = 1,2 are asymptotically stable. For
this situation the Small Gain Theorem states the following. Assuming that A,(s)
is an asymptotically stable system with a H.,,—norm bound }Y, e, |[As(8)]eo < }Y
and ¥, (s) is asymptotically stable with H.,-norm bound v, then the closed-
loop system in Figure 2.3 is stable. The proof is most easily performed utilizing the

submultiplicativity property of the Ho,—norm. It can be verified that

lleall: < [lws]]2. (2.43)

1
1 — IlAs(S)Enom,cl(S)

oo
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Hence from the norm-bound assumptions on the individual transfer functions and
1A Eomctlloo < Aslloo||Enometlloo < 1 it follows directly that the closed-loop gain
is bounded and hence the transfer function from wy(s) to ey(s) is stable. A similar
argument establishes stability for the other transfer functions. The synthesis problem
can now be stated as follows. Assuming a set of uncertainties that are lumped into an
asymptotically stable, Ho,—norm bounded system A,(s) with [[As(8)]|ec < }7, find a
controller (*(s) that stabilizes the nominal plant 2,,,, ,»(s) and, in addition satisfies
|Znometllo < 7. This is a nice characterization of robust stability in terms of the
Hoo—norm. Although there are other criteria to determine whether or not a system

is robustly stable, most of these methods have to be considered analysis tools rather

than design tools at present.

So far no exogenous input signals have been included into the system description.
As mentioned above, external signals may come from a variety of sources. Some
signals may be disturbances (deterministic and stochastic) as well as commanded
inputs or tracking signals. Fictitious stochastic signals have a long history in the LQG
methodology and have proven to be a good means to model sensor and process noises.
Although the exact distribution of stochastic disturbances is rarely known precisely,
experience and in-depth analysis of the plant environment will in many practical
engineering applications permit a close approximation of the noise interference in
terms of stochastic signals with known distribution. With appropriate filters these
signals can usually be generated from white-noise signals with unit spectral density.
These shaping filters are easily incorporated into the open-loop plant model and
hence we may consider white-noise signals as the only type of stochastic disturbances
entering the plant. In Figure 2.4 w,(s) collects all stochastic inputs to the plant. That
is, wy(s) includes sensor and process noises as well as other stochastic disturbances

and is assumed to contain only white-noise signals with unit spectral density.

Deterministic inputs and other deterministic L,-bounded disturbances are repre-
sented by the vector w, o, in Figure 2.4. As before, it is assumed that all the system
uncertainties are lumped into the transfer function A(s). From previous considera-
tions it is clear that robust stability can be defined in terms of a Ho,—constraint on
the transfer function from w, . (s) to z500(s). Possible weighting functions on this

transfer function are assumed to be incorporated into the open-loop model.
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Figure 2.4: Performance with robust stability.

Now let us turn to possible performance objectives in the overall design concept.
For this purpose let us define two sets of criterion output vectors 2, (s) and zy(s).
For future reference let Ty(s), Tsoo(5), Tpeo(s) and Too(s)denote the transfer func-
tions from w;(s) to 23(s), from ws o ($) t0 2s.00(S), from Wy 00(5) t0 2 0e(s) and from
Weo () = (w! o (s), wl ()T to z,(s) = (=T (s), 2l ()7 respectively.

In general there is a large number of possible performance specifications that one
may want to impose on one or more of the above transfer functions. “Performance”

in this context corresponds to any additional requirements on the closed-loop system

other than robust stability. Rise and settling times, desirable closed-loop pole loca-
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tions, controller gain limitations and so forth are only a few examples. The reader is
referred to [13] and references therein for a comprehensive treatment of such perfor-
mance objectives in an overall design philosophy. Performance in this research refers

to Hy-performance, although H.—type performance can also be incorporated.

H,-objectives have a long history and have proven to be a good tool for practical
control design tasks. By varying the corresponding weighting matrices ¢) and R in
a corresponding LQ-cost function, many performance objectives can be addressed
implicitly with this type of performance criterion. Assume that w, (s) and 2z, ()
are zero and concentrate on the transfer function 75(s). In this research performance
is then defined in terms of the H,-norm of T,(s). The elements of z5(s) can corre-
spond to a desired quadratic cost function as in the LQ-framework. More generally,
we intend to minimize the effects of the stochastic disturbance signals wy(s) onto the
criterion vector z;(s). Robust and nominal performance are easily illustrated with the
|T5]|, for

all permissible A4(s), then robust H,-performance has been achieved. As mentioned

configuration in Figure 2.4. If we can guarantee that the controller minimizes

earlier, this problem is still unsolved. Alternatively, one can define the problem of
H,-performance for the nominal plant. That is, minimize ||T3||; for As(s) = 0, sub-
ject to robust stability in terms of an H.,—constraint on T .(s). For the stability
problem w;(s) does not have to be considered and can be assumed to be zero. This
problem has the advantage that the corresponding H,-problem and the H,,—problem
can be treated separately. This problem has been solved in the most general setting
with the least number of system assumptions in this research. In this formulation the
“cross transfer functions” from w,(s) to z;,.,(s) and from ws oo () to z3(s) respectively
are neglected. This fact will be discussed in section 3.5 where the results of this work

are interpreted in terms of an upper bound for robust H,—performance (see [117]).

Now let us turn to a possible performance objective for the transfer function
Tpoo(s). For deterministic signals w, .(s) the Hy-norm has no performance in-
terpretation. For this pair of disturbance/criterion vectors the H.,~norm offers a
possible framework to define “performance”. That is, performance may be identified
as the worst—case gain of T, . (s)over all frequency and hence in terms of || Ty, 00 co-
Minimizing this norm (or bounding it from above) will reduce the worst—case effect of
Wy oo(8) ONtO 2, o ($) according to equation (2.43). This type of performance is easily

transformed into a stability robustness problem by introducing a fictitious uncertainty



33

block Ap(s) as depicted in Figure 2.4. The overall “stability” problem can be solved
via a single H,,~design defined on the transfer function T (s) corresponding to an
overall uncertainty block A(s). This approach results in “robust H,,—performance”

as the H,,~bounds are guaranteed for all uncertainties in A,(s) and A,(s).

This property is utilized in u-synthesis to design controllers that provide ro-
bust stability and robust performance. However, as mentioned before, this type of
performance must not be confused with H,-performance. H,-objectives are not
included in p-synthesis as this type of performance cannot be transformed into a
singular—value based stability problem. As in the case of H;, one can define nomi-
nal He-performance by solving two H.,—problems with the same controller, one for
robust stability (with A,(s) representing model uncertainties), and one for the H,-
performance defined on 7, o (s) with A,(s) as the associated uncertainty block. This
formulation requires the capability of solving multiple H,,—constraints, a problem

that is still hard to solve in a general formulation.

Let us assume that a possible H.,~performance criterion is defined via a ficti-
tious uncertainty block A,(s) such that the overall uncertainty A(s) is given by
A(s) = diag {As(s) , Ay(s)}. Referring to Figure 2.5 we are then in a position
to state the mixed H,/Ho—problem (with nominal H,-performance and H,,-robust

stability) for the single plant case as follows.

Mixed H,/H..—design strategy:

“Find a controller that minimizes the nominal H,—norm of 75(s) and robustly sta-
bilizes the closed-loop plant for all uncertainties A(s) subject to ||A[lo < }v for some

prespecified stability radius +.”

This formulation for the single plant case is easily extended to the multi-plant
case as depicted in Figure 2.6, which treats n, open-loop plants Eg/m'op(s) for 7 =
1,2,...n, simultaneously. These plants are used to represent different operating points
and hence multiple plant conditions or the same plants with multiple H, and/or
Ho.—objectives. The H,-performance measure is a weighted sum of the individual
transfer functions T5(s) from wj(s) to z(s). Robust stability is defined in terms of n,,
Hoo—constraints defined on the transfer functions T (s) from w!_(s) to z'_(s). This

formulation is a natural extension of the above concept for the single plant case and
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Figure 2.5: The mixed H;/H,-synthesis problem - the single-plant case.

represents a general framework for the mixed H,/H.,—design problem. It allows the
incorporation of multiple H.,—constraints for one or multiple plant models as well as
H,-performance for a range of operating conditions of the plant. In the next chapter
these objectives will be formulated in a more mathematical fashion along with the

corresponding state-space representation and system assumptions.
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Figure 2.6: The mixed H,/H.,-synthesis problem - the multi-plant case.



Chapter 3

PROBLEM FORMULATION

3.1 State-Space Description of the Considered Systems

According to the multi-plant mixed H;/H o —formulation defined in chapter 2, we con-
with H—standard

representations for the plant uncertainties. Without loss of generality we assume that

. . . - . . 1
sider n,, linear time-invariant nominal open—loop plants 2 oo 0p

each of the n, individual systems has the following realization.

() = A'2i(t) + Biwi(t) + Biw' (1) + Biu'(t)
; : z;(t) = (7lfxf(t) + Djlzu;(t) + D§:2w;o(t) + D;Suf(t) (3.1)
) ) = i)+ Diwi(t) + Digwi () + Digui(t)

yi(t) = (7,’;;ci(t) + D:Zﬁlwé(t) + Dé'zwio(t) + Dri53“i(t)

for i = 1,2,..,n,. 2'(t) represents the i** system state, u'(t) is the :** control input,
y*(t) is the measurement available to the controller from the it system, w5 (¢) and 23(t)
are respectively the disturbance input and criterion output for the H,-performance
measure on the ¢* plant, w! (t) and z! (t) are respectively the disturbance input
and criterion output for which the i** H, —constraint is defined. For a given plant

condition, model uncertainties are assumed to be lumped into a stable, norm bounded

Ai(s)-block,

: 1
A'(s 00 S —r 3.2
|A* ()]l " (3.2)
with the feedback connection
w' (s) = A¥(s)z'_(s). (3.3)

In general all of the above signals are assumed to have the following dimensions:
(1) € R, wh(t) € R, wi () € Rwet, 2i(t) € Roon, 22,(1) € Riowr, (1) €

[ee] o0

R* and y* € R™ fori=1,2, ..., np. All involved matrices are of compatible dimen-
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sions. The controller (7(s) is assumed to have the following state-space realization

(7(3):{@@) = Aux(t) + B.y'(t)

, , (3.4)
u'(t) = Cezft) + D.y'(t),

where x.(t) € K" and n. is a prespecified controller dimension. A compact parametric

representation of the dynamic controller ('(s) is given by

D. C. ‘
Co == ( B( AC ) . (35)

For static controllers (Vg reduces to Cy = D.. The system assumptions imposed on

the open-loop plants are as follows.

Assumptions:

Al: (A', BY) are stabilizable pairs for all 7 = 1,2, ...,n,,
A2: (A, (%) are detectable pairs for all i = 1,2,...,n,,
A3: dim(u') = n, =n, and dim(y*) = n, =n, forall i = 1,2, ..., n,,

Ad: DY, = D% = .. = DY = Dy,

Assumptions Al and A2 are necessary for the existence of a controller that stabi-
lizes all plant conditions simultaneously. That is, a controller must be able to detect
unstable poles through y'(s) in any of the n, plants and stabilize these modes via
the control u*(s). The number of controller inputs and outputs must be the same

for all 2.3

conditions. This necessity is reflected in A3. Assumption A4 is a technical assump-

Joo,0p SiDice we consider only one controller, i.e., one control law for all plant
tion related to a well-posed system for a class of n, plants controlled by a static
controller. When assumption A4 is satisfied and a controller ('(s) has been found for
the measurement §*(s) = y'(s) — Dasu(s), then the actual controller for the :** plant

condition is

u'(s) = wu(s), 1=1,2,..,n, (3.6)
u(s) = O()[Cir'(s) + Digui(s) + Dl (9)] = CF(s),  (37)

= C(s)[y'(s) — Dsau(s)). (3.8)
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Rearranging equation (3.8) yields ([113])
u(s) = [1 + C(s) D) ' C(s)y' (s) = C(s)y'(s). (3.9)

Thus, if the inverse of [I + (~7(3)D33] exists, the control problem is well posed and a
controller ('(s) with the measurement y*(s) can be found from the control law realized
by (77(.-:) using §'(s) as measurement. Let A., B., C. and D. denote a state—space
realization for (;(9) Assuming that (I + DCDg;g) 1s non-singular, it can be shown

that a state-space realization for ('(s) is as follows.

A = A.— B.Dss(I + D.D33)"'C. (3.10)
B. = B.(I+ Ds3D.)™! (3.11)
C. = (14 D.Ds3)7'C, (3.12)
D. = (I+D.Ds3) ' D.. (3.13)

Thus, under a mild condition and the assumption A4 the controller can be designed
by first considering D33 = 0. The case D33 # 0 can be accounted for after the design
for D33 = 0 has been performed. As the new controller in this case realizes the same
control law, properties such as Ho,-norms and H,-norms of the closed-loop systems
will be preserved under this operation. Hence, in the following we will explicitly as-
sume Dj3 = 0. In general it is also possible to remove the direct feedthrough term D,
in the above formulation ([113]). This additional term, however, does not increase the
complexity of formulae in this presentation. It should also be noted, that the dimen-
sions of the individual open-loop system states z*(¢) are not constrained. In general
these dimensions can vary from one plant condition to the other. This fact allows
the incorporation of different shaping filters or other dynamics to account for specific
requirements of a certain plant condition. Furthermore, unlike the approach taken
in [89], no restrictions with respect to system zeros or rank conditions are imposed
in this formulation for the mixed H,/H.,—~design. With the technical assumption A4
the constraints A1-A4 are the minimally necessary assumptions. Hence the proposed

formalism provides a versatile and general framework for the considered problem.



Now, given a controller Cy, the closed—loop plant conditions can be represented as

follows.

_ () = Alzy(t) 4+ Bl wi(t) + Bl oo(t)
Sooet(Co) 19 25(t) = C4ai(t) + Dy awi () (3.14)
Z:X)(t) = y;loo ch(f) + DClZoo zZ(t) + Dcloo oo(t)

Note that the direct feedthrough term D, + Di,D.Dj, from wi(t) to zi(t) is not
shown. The H,-performance measure will be defined on the transfer functions from
wh(t) to z4(¢) and hence DY, + Di,D.Dj, = 0 is a necessary condition for the corre-
sponding H,;-norm to be finite. This coustraint can be satisfied by directly constrain-
ing the structure of the controller C'(s) (i.e., design of a strictly proper controller if
Dy, =0 for all 2 = 1,2,...,n,) or has to be added as constraint to the optimization
problem to be defined. For the numerical implementation this constraint is assumed
to be explicitly satisfied for all plant conditions by a suitable choice of the controller
structure depending on the open-loop matrices D},, D}, and Dj,. As discussed ear-
lier, the approach solves the nominal H;-problem subject to Hs,—constraints. This
mmplies that we can assume we(f) = 0 for the performance objective. The resulting

closed-loop subsystems } () from wi(s) to z3(s) with w!, = 0 are as follows.

(,):{Jz;m = Alyr(t) + Biywi(t)
b G(t) = Clui(t).

The corresponding subsystems X% ,(Co) from wi () to zi (t) are defined for w}(t) =
0 and are subject to the robust stability criteria in terms of H,,—constraints.
((w ) ‘L'f)o(f) = cI ool (t) + BCI 00 oo(t) (.3 16)
co,cl K i i 3.
Zoo(f) = cloo‘l:oo(f) + Dcloo oo( )

Obviously, in this formulation the (possibly non- zero) direct feedthrough terms D"
and 1!

into consideration. This fact will be discussed in more detail in section 3.5. In general

cl,00,2

H.2.00 fTOm Wl (s) to zj(s) and from wi(s) to z% (s), respectively, are not taken

all the closed-loop state matrices are functions of the controller representation Cj.

This dependency is omitted here to keep the notation to a minimum.
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For future reference the closed-loop state-space matrices of £} (o) and i, ,((%)
are rewritten in a form that is convenient for the derivation of the explicit gradient

expressions in appendix B.

Ay, = A" + BiCoCi
By, = By + BCoDy
7il,z = (7li + Di3 70(7.%
iz,oo = il,z = iz (3.17)
Neo = By 4+ BiCoDy,
7;1‘00 = (1’5 + D’BC()(_:'%
il,oo = D‘iz + D~§3C0D.£32

where

_ B; . B} - Bi
Bi=| '], By=|"*|, Bi=| 7 °).
0 0 0 7

(’*{2(,7{' 0), 7,;':((73 0)’ g (;5 (;) (3.18)
Dég:(D% 0)’ Diy = Diy, D'§3:(D§3 0)3

_ D; . D;,
Dy=1 V), D= "*].
(%), (7

Identity matrices in this representation are assumed to be of compatible dimensions
such that the matrix operations in (3.17) are well defined. This notation will be
maintained throughout the remainder of this report. Note in particular, that this
representation shows that all closed-loop matrices are linear in the considered con-

troller parametrization Cj.
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3.2 Problem Definition

~

Let T3(Co,s) and T' (Cy,s) represent the transfer functions (as a function of the
controller parametrization Cp) corresponding to the closed-loop systems Eé’d((jg)
and ZY_ ,(Co) respectively. Then the mixed H;/Hq—control problem can be defined

as follows.

Definition 3.2.1
Assume n, open—loop plant conditions as in (3.1) satisfying the assumptions Al
through A4. The mized Hy/H.,~design strategy can be defined as follows: Find a

stabilizing controller C§ such that the performance criterion Jo(Co,tpa,) i minimized

where
H(CF) = min lim  Jy(Co,tsx,) (3.19)
Co trr,—00
J(Costrry) = D' Ji(Cortrn,) (3.20)
=1
']‘;(Covtfﬂz) = g[Z;T(tfH'z)z;(tfﬂz)]a (3'21)
where
Clim 3 (Co,tyr,) = I T5(Co)ll3s (3.22)
fHy =0
subject to the constraints
1T5%(Co)lloo < 7' (3.23)

for a stabilizing controller Cy and all i = 1,2, ..n,. The n, parameters v are chosen

by the designer and & are n, weighting factors.

This formulation is the mathematical equivalent to the problem posed in the last
chapter. The H,-performance index J,(CY) is the weighted sum of the individual
(nominal) H,-norms for each plant condition while robust stability is imposed via n,,
H—constraints. This is a constrained optimization problem where the H..,~bound
can be expressed in terms of any of the characterizations presented in the last chapter.
In the overall optimization the performance cost can be expressed in terms of a finite—
time cost or in terms of the system grammians which correlate to ¢4, = oo in the

above definition.
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3.3 The H,—design problem

Depending on whether the initial controller guess is stabilizing or not there are two
possible ways of setting up the corresponding H,-problem computationally. If the
initial controller guess is stabilizing, the :** performance cost can be computed via

the controllability or observability grammians as follows.

IT(COl} = Trace[(By,)"LiBY,) (3.24)
= Trace[Cl,L(C},)T] (3.25)

where L! and L! solve
(A Ly + LAy + (Clp)TClhy = 0 (3.26)
Ai,Li—&-Li(Ai,)T-i—BZ,‘Z( ;I,Z)T = 0. (3.27)

On the other hand, if Cy is not stabilizing the :** plant, Ji(Co,t;2,) can be expressed

in terms of a finite—time cost function as

C

; tin . ‘ . . : .
T(Costyr) = Tracel [ (B ) e W™ (€8 ) TCh e W Bl ydt]  (3.28)

trr . . . . ; i
= Trace] /O L Ol B (Bl )T AT )Tl (3.29)

If the closed-loop system is stable, then in the limit as ¢34, — o0, (3.28) and (3.29) are
equivalent to (3.24) and (3.25). The infinite-time approach in (3.24) or (3.25) is well
known and is used in all current design approaches to the mixed H,/H,—problem (e.g.
[89]). An H,-approach based on a finite-time cost function in (3.28) and (3.29) was
introduced in [64], where corresponding explicit gradient expressions were derived.
The concept has been applied successfully to a variety of Hy—problems. As already
mentioned, this approach does not require an initially stabilizing controller. However,
if the pure H,-problem is considered, the requirement for closed-loop stability has to
be augmented in terms of constraints on the eigenvalues of A?, for all plant conditions
if certain observability /controllability conditions are violated. In either case, these
representations are smooth and hence can be solved using standard gradient-based

software.
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3.4 The H.,~design problem

3.4.1 Notational Convention for ARI’s and LMI’s

In chapter 2 a particular notational convention was not so important as no specific
control strategy is considered there. Only closed-loop systems with an independent
parametrization in terms of (A, B,C, D)} are analyzed. When dealing with specific
feedback control problems a more specific notation is needed. In the following “LMI”
will refer to matrix inequalities that are linear in the sought-after solution X (see
lemma 2.2.5) while “ARI” denotes Riccati-type inequalities of the various types pre-
sented in chapter 2. In particular, the following forms (and parameter dependencies)

for ARI’s are used consistently throughout the remainder of this report.

. ARI% op(Co, X\ v'):

Algebraic Riccati Inequality for the 7

Hoo—bound associated with the it*
continuous—time (subscript (7) plant condition for the output-feedback case
(subscript OF') as a function of the controller matrix (7, the sought-after so-
lution X* for the 7* ARI, and +'.

2. ARI¢ sr(Co, X, 7):
Algebraic Riccati Inequality for the Ho,~bound associated with the continuous—
time (subscript (7) plant for the full state-feedback case (subscript SF) as a
function of the controller matrix Cp, the sought-after solution X for the ARI,

and . The plant index ¢ is dropped in this case (see section 6.2).

3. AR[[),SF(CO, X,’y) (OI‘ LM][),SF(CO, X,'y)):
Algebraic Riccati Inequality (Linear Matrix Inequality) representing the Ho.—
constraint in the discrete-time domain (subscripts D) full state-feedback case

(subscript SF') for a single plant (see appendix D).

This notational complexity is necessary to address a wide variety of problems associ-
ated with the H.,— and mixed H;/H,,~problems considered in this work. In partic-
ular the dependence on the set 4 for the general output—feedback case and on v for
the state—feedback case is included to extend the problem formulation to the optimal
Hoo-problem. With this convention we can now reformulate the H, —constraints in

terms of matrix inequalities.



44

3.4.2  Reformulation of H.,—Constraints in Terms of ARI’s/LMI’s

The Ho—problem in definition 3.2.1 is not as readily amenable to gradient-based
methods. If the basic frequency-domain definition for the Ho—norm is used to
represent the desired H,,—costraints in definition 3.2.1, then the resulting overall
optimization problem is not smooth. Alternatively the Ho,—constraints may be ex-
pressed in terms of n, ARE’s. This approach was taken in [89] and in [112], where
a Lagrange multiplier approach has been utilized to append the H.—constraints in
terms of ARE’s to the H,performance cost. This formulation, however, imposes a
variety of restrictive system assumptions as brought forth in [24]. In this research the
H..—constraints on the closed-loop systems are replaced by n, matrix inequalities.
Any of the ARD’s (or the LMI) in lemmas 2.2.4 or 2.2.5 can be used for this purpose.
[t has to be kept in mind, that these inequalities will now be functions of the con-
troller Cp and their respective solutions X*'. As a result of the above discussion the
n, H.,—constraints for the general output-feedback case as posed in definition 3.2.1

can now be reformulated as follows.

Definition 3.4.1

Consider n, closed-loop plant conditions as in (3.16) satisfying the assumptions Al
through A4. Then the suboptimal H., ~design problem can be posed as follows: Find a
stabilizing controller Cy and a set of n, matrices X* such that the following constraints

are satisfied,

1) ARIL op(Co, X9 < 0

9 DT Di (2] 0

) ctyoo Dtoo = (V) < (3.30)
3.) -X' <

4.) Xt = X7

for a given a set of n, He—bounds ¥* (1 = 1,2,..n,) as in definition 3.2.1 where

AR op(Co, X' 7') = [AL+ Bl oo (R) (Do) Clre X (3.31)
+XAL 4 Bl o (R) T (Dl o) Clt o]
X Bl oo (R (Bl o) "X+ (1) (Clroe) (5 Clt e
R = (71')21_( il,w)T il.oo (3.32)
sto= (71‘)21_ iz,oo( 1l,m)T- (3.33)



Constraint 2 is a necessary condition for ||T% (Co,s)|| < 7', conditions 3 and 4
specify the desired solution for the ARI and constraint 1 enforces the matrix inequality
constraint itself.

In general, if a controller Cy can be found that satisfies all these constraints, then
ARIE op(Co, X' 7') < 0 implies ||T5(Co)lle < v'. Unfortunately nothing can be
said about the gap between ||T% (Co)l|ec and the specified y*. That is, no means
are available to determine “how close” the achieved Ho,—norm of the i** closed-
loop plant is to the specified robust stability bound «*. This gap will in general
depend on the plant data, the controller and the “distance” between the eigenvalue
MARIE o p(Co, X' 4] < 0 and the origin. This formulation immediately poses the
question of how to enforce matrix inequalities in a gradient-based formulation. A

new novel method to reformulate constraints of this kind in terms of a scalar cost

function will be introduced and discussed in chapter 4.

3.4.3 State of the Art in Ho,—Synthesis

Based on the Youla parametrization (see e.g. [66]) it can be shown that the H..-
design problem is in general infinite dimensional. The class of all suboptimal H-
controllers can be constructed from an arbitrary stabilizing controller and an ad-
ditional (infinite-dimensional) H.,norm-bounded transfer function Q(s). This led
to frequency-domain methods solving the so—called One-, Two- and Four-Block
problems. The main thrust for the application of H—methods to practical control
problems were the DGKF equations ([24]). The parametrization of H.,—suboptimal
controllers in terms of two Riccati equations provided an elegant and numerically
tractable design method for the computation of He-suboptimal controllers that are
of the same dimension as the open-loop plant. The main drawback of this solution
is the set of rather restrictive system assumptions imposed on the open-loop system.
These assumptions include restrictions on the system zeros and rank conditions on
various system matrices. Due to the rank assumptions this approach is known as the
reqular Ho, —problem and the resulting controller based on this approach is the Central
Controller (as Q(s) — from the Youla parametrization - is assumed to be zero). The
rank assumptions in the DGKF approach were removed in the work by Stoorvogel

([113], [115]). There Ho,—suboptimal controllers are computed via the solution of two
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quadratic matrix inequalities subject to rank constraints on two subsystems of the
open—loop plant. Due to the removal of the rank assumptions this approach solves
the so—called singular H.,—problem. However, this approach still requires assump-
tions on the open-loop system zeros of the plants under consideration. Until recently
this problem had to be circumvented via e-perturbation techniques ([97], [45]).

A new type of approach was initiated by Sampei et.al. ([98]) where the Hoo-
problem for output—feedback controllers has been posed in terms of two ARI’s. The
system assumptions involve a minimal set of necessary constraints on the open-loop
system, namely detectability and stabilizability. No further constraints are imposed.
This was the first approach that removed the restrictive assumptions on the system
zeros. This idea has been developed further and resulted in a (convex) parametriza-
tion of all (full-order) H,—suboptimal controllers. Early exposition of this method
may be found in [35], [36] and subsequently in [52]. The corresponding theorem is
stated here (with the notation used in this report) for the sake of completeness and

as a comparison to the approach taken in the presented formalism.

Theorem 3.4.1 (Theorem 3.1 in [52])
Consider a controller of order n. and the H.,—problem for the single plant case, i.e.,

n, = 1. Then the following statements are equivalent.

1. There exists a controller of order n. such that ||Too(Co, $)|jeo < 7-

2. There are symmetric positive—definite matrices X and Y such that
I AX + XAT + B,BT XCT + B,DL,
72)( + DzzB; D22D;FQ — ’)’2]

yt [ YA+ATY +CICy Y By +C] Dy
BTY + DLC,  DL,Dy — 42

X I N
(1 Y) S0 )

rank(l — XY) < n, (3.37)

)LT < 0 (3.34)

<0 (3.35)

B
where the columns of L form a basis for N[( D3 )] and the columns of M

23

represent a basis for N[( (s Dsy )]
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A parametrization of the controller ("(s) in terms of X and Y is given in theorem
3.2 in [52]. This formulation constitutes the “state of the art” in H..,-synthesis,
as all suboptimal H,,—controllers of order n. = n, can be derived from the solu-
tion of two linear matrix inequalities along with a coupling condition. Unlike in the
LQG-philosophy the separation principle is no longer valid. That is, the optimal
output estimation and full information control problem (the H.-equivalent to the
full state—feedback problem in LQG-theory, see [43]) cannot be treated separately in
Hoo—control. The coupling condition (3.36) is a necessary condition for closed-loop
stability. The above theorem completely characterizes all full-order H.,—controllers
(i.e. n. = n,) in terms of the three inequalities (3.34), (3.35) and (3.36). It im-
poses the least number of system restrictions and, in particular, does not make any

assumptions on the system zeros.

For fixed-order controllers, however, the additional constraint (3.37) has to be
satisfied. Rank constraints are hard problems to solve and are the subject of on-going
research (see e.g. [36], [37]). Furthermore, the controller parametrization follows
directly from the solutions X and Y of the above inequalities. Hence this approach
is not applicable to design problems where the controller is structurally constrained
or problems with multiple plants as proposed in this work. Most importantly, the
above formulation also leads to the fundamental problem of how to enforce matrix

inequalities. This problem will be addressed in the next chapter.

3.5 Robust Hs—Performance — Some Recent Results
2

The problem of robust ‘H,~performance is to a large extent still an unsolved problem,
as pointed out in the introduction. However, some promising results for this problem
have been derived in [39] and [83]. An ARE-based approach is used to define an
upper bound for the Hy—cost for all considered uncertainties with a given H..—norm
bound. A different approach to define an upper bound for the robust H,—-performance
measure has been investigated in [114] and [117]. The approach is intuitive and is
briefly reviewed here as it allows an interpretation — and possible extension - of the

presented results to the problem of robust H,-performance. For this purpose consider
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the n, closed-loop systems 3 2/c0,ct(Co) 10 (3.14),

j’il(t) = €T ( ) + 811 zwz(t) + Blloo oo(t)
‘Zz/oo,cl((jo) : Z;(t) = (IIZ‘I: ({) + Dzloozw (t)
::;o(f) = cloo Cl(t) + Dclloow'zz(t) + Dcloo oo(f)

with the uncertainty block A*(s) connected to this system in a feedback connection
such that w! (s) = A'(s)z_(s). For the results derived in [117], A’(s) may be linear,
nonlinear, time-varying or time—invariant, providing a generalization of the stan-
dard H,,—assumption on the uncertainties. Without any knowledge on the internal
structure of A'(s) the uncertainty is allowed to contain a “direct feedthrough term”

With DY, . # 0 this would cause a direct feedthrough term from wj(s) to zfx)(e)
and through the uncertainty to zi(s). As a result the H,-norm of the transfer func-
tion from wi(s) to z5(s) would be infinite. Thus as in [117] we need to ensure that
Dy 300
here that D!

= 0. Although having DY, _, = 0 would yield the same result, it is assumed

cl,00,

= 0 with possible D

functions and their corresponding input/output mappings and state-space realiza-

# 0. For this case the relevant transfer

cl,2,00 cl,00,2

tions are given in terms of the closed-loop matrices. Here a closed-loop system is

related to the system configuration with a controller Cy and not with the uncertainty

At(s).

Ti(Coys) 1 wi(s) — 25(5), Ta(Co) = [A, el.oo gloo)D:‘l,oo]

Tioc(Cors) ¢ () = 2(), Thoo(Co) = [Alg Bigy, Clyocs0) 3.38)
oo,z(COaS) Dowh(s) - 25(5)» T;o,‘z( o) = [Acla clooa ch’Dlloo2]

Tg( 70’3) : w;(q) = z‘i(s)’ TZZ(CO) = [Acl’ cl,z’ ’cl,270]'

Obviously Ti(Co, s) and T (Co, s) are the closed-loop transfer functions for the nom-
inal problem. With the additional cross coupling terms Tz,oo( Jo,8) and T2 ,(Co, s)
along with the ¢** uncertainty A'(s) it can be shown that the transfer funrtlon
T3 A(Co, s) from w}(s) to z5(s) with both the controller Cy and the uncertainty block

Al(s) closed in the i*" system has the following form.

T3 A(Coys) = T3(Coy8) + Tl o(Coy $)[I — AY(S)TE(Coy 8)] T AN S) TS (Coy s). (3.39)
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By applying appropriate system norm inequalities it can be shown that (lemma 2.3,

[117])

175 2(Co)loo 1A oo
I = | Ao | 7%5(Co) oo

I175,4(Coll2 < NIT5(Co)l> + 15 0 (Co)lla- (3.40)
This inequality gives rise to a range of observations and interpretations for the nominal
H,—design formulation in this work. For the nominal Hy-problem obviously the term
T;)Z((TO,S) is assumed to be zero and hence the second term on the right side of
inequality (3.40) is neglected. In face of (3.40) and with the capability to include
multiple plant conditions, one can define an “upper bound robust H,-performance

problem with robust stability” using the following design objectives

I. Minimize a weighted sum of ||T3(Co)l|2 and ||T} . (Co)|l2,

2. Minimize the Ho,—norms of T? (Co, s) and T ,(Co, s) for given Ho,—norm bounds

on the uncertainties A*(s),

3. Guarantee robust stability for all plant conditions in terms of the Small Gain

Theorem by HAZ”OOHT;(;( ‘o)l < 1,

for all ¢, ¢ = 1,2,...,n,. It should be noted, that inequality (3.40) does not place
any assumptions on the uncertainties A'(s), not even causality. This may cause the
upper bound in (3.40) to be very conservative. At this point there is no theoretical
means to compute the gap between the actual worst-case norm ||Tj 5(Co)]|2 and the
upper bound. The true robust H,-performance problem — not an upper bound - is
a problem that has yet to be solved. However, inequality (3.40) has implications for
the nominal H,-problem. In particular, after a design has been performed for the
nominal problem, it is always possible to compute an upper bound for the robust

Ha-performance given by the right-hand side of inequality (3.40).

Although these ideas are not pursued further in this work, the stated results allow
the designer to easily compute a guaranteed H,-performance cost for all possible
uncertainties and hence an upper bound for the robust H,-performance cost at the

7** plant condition, regardless of which design method is used to derive the controller.



Chapter 4

SYMMETRIC MATRIX-INEQUALITIES, THEIR ROLE
IN CONTROL SYSTEMS THEORY AND A NEW COST
FUNCTION FOR THEIR ENFORCEMENT

4.1 Matrix Inequalities

A wide variety of control problems can be reduced to matrix inequalities. In the past
such criteria have largely been neglected as they do not allow the computation of
analytical one-step solutions. The representation of H,,—constraints is one of many
problems that can be casted as a matrix inequality constraint. Stability, for example,
can also be characterized in terms of parameter dependent Lyapunov inequalities.
Present approaches to p-synthesis convert the general min-max problem to a se-
quence of optimization problems involving the minimization of the Ho-norm of a
scaled constant matrix. This formulation in turn can be expressed in terms of matrix
inequalities. Present H,,-synthesis methods often yield unstable controllers which
are undesirable in practice. The requirement for a stable controller, however, can be
easily translated into a Lyapunov-type inequality constraint. Other applications of
matrix inequalities are optimization problems involving maximum generalized eigen-
values, minimum dissipation constraints, Hankel norm constraints, inverse optimal
control problems and many more. A forthcoming book by Boyd et. al. contains a
very complete list of such problems and their conversion to matrix inequalities (see
[15]). Presently, however, there are no reliable gradient-based methods available to

find solutions for such inequalities.

In the following let us consider a general problem as follows. Let Q(v) be a real
symmetric matrix-valued funtion of a set of independent real variables v. That is, the
expression Q(v) defines a mapping of the variables v to the general set of symmetric

matrices as follows.

Q(v): v Qv), veE R, Q(v)=[Q)]T € R, (4.1)



For this kind of matrix-valued function we consider the following inequality constraint
Q(v) < 0. (4.2)

This formulation is general and includes all the above control problems with proper

definitions of Q(v).

4.2 Present Solution Methods

Present approaches to enforce matrix inequalities include non—differentiable methods
such as Kelley’s cutting plane or ellipsoid methods. These methods are based on
subgradients and cannot be integrated into a gradient—based formulation. Other
approaches such as homotopy methods have been successfully applied to solve these
problems. The only differentiable scalar function defined for the computation of
solutions to inequalities is an “interior point” method and can be found in [15], [14].

There the following barrier function has been defined.

(4.3)

b(v) = { logdet[-Q(v)]™' wveV

00 v gV,

where V is the set of feasible solutions such that v € V = Q(v) < 0. This type of
barrier function has been successfully applied to scalar inequality constraints (see e.g.
[63]). For matrix inequalities, however, a closer look reveals that @(v) is a barrier
function only by definition, not by virtue. That is, one can easily find problems where
Q(v) is sign-indefinite or even positive definite and log det[—Q(v)]~! still remains fi-
nite. This will happen whenever the number of positive eigenvalues of Q(v) is even.
In general, when moving from the scalar case to the matrix case one has to take into
account the multi-dimensional nature of the problem at hand. Also, because ¢(v)
1s an interior point method, the initial guess for this method must a-priori satisfy
the constraint. Hence this function is applicable in a gradient-based optimization
only when a solution for the desired constraint is known a-priori. Presently such a
“guess” 1s generated using the non-gradient based methods listed above. In the fol-
lowing section a new time-domain cost function is defined that removes the problems

associated with ¢(v).



4.3 A Scalar Differentiable Cost Function to Enforce Matrix Inequalities

In this section we consider the problem posed in equations (4.1) and (4.2). For this
feasibility problem we define the following time-domain penalty-function f(v, ;). It
1s a function of the independent variables v and an auxiliary positive scalar parameter
ts. Namely,

flosty) = Trace{e[Q(“)]tf}. (4.4)

This cost function is an extension of scalar penalty functions to the matrix case and
posesses many attractive properties as elaborated in the following section.

Due to the fact that Q(v) is symmetric, negative definiteness of Q(v) is equivalent
to Q(v) being stable. The matrix el®®)s can be interpreted as the transition matrix
of a system é(t) = Q(v)e(t) and hence the inequality constraint Q(v) < 0 can be
interpreted as a stabilization problem. This justifies the classification of f(v, tf) as a
time-domain function. It is easily verified that the defined cost function f(v,t;) can

be rewritten as

q
floty) =3 eMelty (4.5)
=1

That is, f(v,ts) consists of the sum of the exponential of the eigenvalues of Q(v)
(weighted with ¢). For symmetric Q(v), it is known that all eigenvalues of Q(v)
are real. The key property associated with the penalty function f(v,t;) and the

constraint Q(v) < 0 is expressed in the following theorem.

Theorem 4.3.1
Consider a real symmetric matriz inequality constraint of the form Q(v) < 0, Q(v) =
[Q(v)]T € R™*? and the penalty function f(v,ty) defined in (4.4). Then the following

statements are equivalent.

1. Q(v) < 0 (1.6)
2. lim f(v,t;) = 0. (4.7)

tf—o00

Proof: 1. — 2.: If Q(v) < 0 is satisfied then all the eigenvalues of Q(v) are real and
negative. With (4.5) this directly implies assertion 2. Conversely, if tlim flv,t;) =0,
f——-§m

then all eigenvalues of Q(v) must be negative and hence Q(v) is negative definite. W



Theorem 4.3.1 shows that matrix inequalities can be enforced using the scalar cost
function f(v,5). Furthermore, in the limit as t; — oo, f(v,t) is zero if and only if
the matrix constraint Q(v) < 0 is satisfied. On the other hand, if Q(v) has at least
one positive definite eigenvalue, then the cost function will be unbounded as t; — co.
Although numerically irrelevant, it may occur that Q(v) has eigenvalues directly at
the origin. As Q(v) is assumed to be a ¢ x ¢ matrix, Q(v) has at most ¢ eigenvalues

at zero. Hence for any t; > 0, f(v,t;) will satisfy
Qv) S0 =0 < flo,ty) < g, (4.8)

where the exact function value depends on the number of eigenvalues at zero. Con-
versely, for t; > 0,
flv,ty) <1< Q(v) <0. (4.9)

Furthermore, if Q(v) < 0, then there will always be a t; > 0 such that (4.9) is
satisfied. These considerations are summarized in the following corollary to theorem

4.3.1.

Corollary 4.3.1
Consider a real symmetric matriz—valued function Q(v) as follows. Q(v) = [Q(v)]T €
R7*7 withv € RP and the penalty function f(v,t;) defined in (4.4). Then the following

statements are equivalent.

L. Qv) < 0 (4.10)
2. 0< tlim flu,ty) < ¢ (4.11)
F—00
(2. Jim f(v,ts)is finite ). (4.12)
f—00

Moreover, for the strict inequality Q(v) < 0 there always exists a large, but finite,
ty >0 such that f(v,t;) <1.

Clearly, in the limit as t; — oo, f(v,t;) represents an interior point barrier function
for the matrix-valued constraint Q(v) < 0. In a practical implementation, t; can be
large but not infinite. It is easily verified that f(v, ;) is well defined for any positive
finite t;, even if the constraint Q(v) < 0 is violated. Hence, for any positive finite

tr, f(v,ty) is an exterior point penalty function. This property is attractive since



it allows the optimization of the cost function to be performed for increasing values
of ¢; until the constraint is satisfied. The problem at hand is to find a v such that
the maximum eigenvalue of Q(v) is negative. It is well known that such maximum-
eigenvalue problems are in general non-smooth. In this formulation all eigenvalues
contribute to the cost function. The more negative the k** eigenvalue is, the smaller
is its contribution to the overall cost. Assume that the maximum eigenvalue A\[Q(v)]
of Q(v) is positive while all other eigenvalues A\;[Q(v)] are negative. In this case t;
can be chosen such that eIt 5 (el for all k, where M[Q(v)] # A[Q(v)].
Then the desired maximum eigenvalue problem is approximated while, in the limit,
as ty — oo, only the maximum eigenvalue (or eigenvalues) will contribute to the
cost function. Generally, in a numerical implementation, it is desirable to increase
ty rapidly to large values so that only the remaining positive eigenvalues of Q(v) are

penalized.

4.3.1 Conver Matriz Inequalities

To emphasize another important property of the cost function f(v,t;) in (4.4), let
us look into two alternative cost functions that can be used to compute solutions for
matrix inequality constraints. Such alternative cost functions f(v,tf) and f(v,tf)

include — but are not restricted to - the following functions.

fo,ty) = 3 fulv,ty) (4.13)
k=1

. B (elAel@ts} _ 1?2 if M[Q(v)] >0

Jilvsto) = { 0 if M[Q(v)] <0, 1

and

flosty) = > (v, 1) (4.15)

‘ _ ) QMN)? if MlQ(v)] 2 0
it = { 0 if M[Q(v)] < 0. (4.16)

Due to the symmetry assumption on Q(v), Q(v) can be diagonalized for any v and
hence f(v,t;) and f(v,t;) are continuous and differentiable in v as long as Q(v) is

continuous and differentiable in v. In this formulation the k™ eigenvalue of Q(v)
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contributes to the overall cost function only if it violates the desired constraint. In a
numerical implementation these alternate cost functions will be superior to f(v,t;)
for small ¢;. The reader is reminded that in f(v,t;) all eigenvalues will contribute to
the cost function, regardless of their sign. Eigenvalues that satisfy the inequality will
be negligible in f(v,2;) only if ¢; is large. However, f(v,;) has one advantage, that
both f(v, ) and f(v,tf) do not share. Namely, they are not convex in the considered
parameters v, even if the underlying matrix function Q(v) is convex. Conditions for
a scalar function to be convex are well known. This concept has a direct equivalence

for symmetric matrix functions.

Definition 4.3.1
Consider a real symmetric matriz—valued function Q(v) of the form Q(v) = [Q(v)]T €
RT% withv € RP. Let vy € R?, v; € RP and « € [0,1], then Q(v) is a conver matriz
function if

Qlavy + (1 — a)vz] < aQ(vy) + (1 — ) Q(vy), (4.17)

where converity is defined in terms of the usual ordering of symmetric matrices.

With this definition we can state a very important property of f(v,t;) in the following

theorem.

Theorem 4.3.2
Consider a real symmetric convez matriz—valued function Q(v) with Q(v) = [Q(v)]T €

R¥*7 and v € RP. Then, for a given t;, f(v,t;) is convez in v.

Proof: Since Q(v) is convex in v, there is a positive semi-definite matrix Q such that
Qlavy + (1 — a)vy] = aQ(v1) + (1 — a)Q(v,) + Q. (4.18)

Then the following chain of equalities and inequalities prove theorem 4.3.2.

flor + (1 = a)vo,ty] = Trace{elovitli-culyy (4.19)
— Trace{el@u(1-a100m)+Qy ) (4.20)
< Trace{el*@)+(1-2)2(w)]y (4.21)
< [Trace{e®t' )] [Trace{e22)tr}](1-) (4.22)
< aTrace{e?™) 4 (1 — a)Trace{e2}  (4.23)
< af(vnty) + (1 = a) f(va, ). (4.24)



Here we have used equation (4.18) to show the equality of (4.19) and (4.20). Equa-
tion (4.21) follows immediately from Weyl’s theorem (appendix A), the monotonicity
property of eigenvalues of hermitian matrices and the fact that the (scalar) expo-
nential function is a (strictly) monotonic function of its argument. Equation (4.22)
is a direct consequence of lemma A.1.6 in appendix A. The final result follows from
the arithmetic-geometric mean inequality (lemma A.1.5 in appendix A), applied to

equation (4.22). This concludes the proof of theorem 4.3.2. W

Note that this convexity property does not depend on Q(v) < 0 and hence is
valid even if the desired inequality constraint is violated. This property is clearly
tllustrated in the scalar case. Let us consider f(v,t;) = ¢ for a real scalar v.
Obviously 32—{,,(52—!1—) = t?e“‘f > 0 for any real scalar v regardless of the sign of v and
hence convexity follows. This is a very powerful result as it allows the representation of
conver matrix inequalities as conver differentiable constraints in an overall gradient—
based optimization scheme. This is of particular importance as more and more control

problems are defined in terms of convex (linear) matrix inequalities ([15]).

4.3.2  Gradient Computation

To be able to utilize the defined cost function in an efficient gradient-based scheme,
it is important to have explicit gradient expressions available. The derivation of such
gradient expressions is presented in this section. A first important result is the fact
that if Q(v) is continuous and differentiable in v, then so is f(v,t;). Assuming con-
tinuity of each entry of Q(v), a standard result from perturbation theory states that
the eigenvalues of Q(v) are continuous in v. Hence, by use of equation (4.5) and the
fact that the (scalar) exponential of a function is a continuous, strictly monotonic
function of its argument, continuity of f(v,t;) in v follows immediately. Differen-
tiability in this context refers to the component-wise differentiability of the (¢,7)-th
entry of [Q(v)];; with respect to individual components v*, k = 1,2, ...p of v. With
the symmetry assumption on Q(v), Q(v) is diagonalizable for any v and hence gra-
dients for A;[Q(v)] are well defined (see e.g. [67]). By use of equation (4.5) it is
easily shown that f(v,t;) is differentiable with respect to v as well. Henceforth it
is assumed that Q(v) is continuous and differentiable with respect to v. Note that

in the above discussion no restriction has been placed on the form of v. A repre-



sentation of v in Q(v) may in general be a scalar, a vector or a matrix. Explicit
gradient expressions depend on the considered matrix inequality. However, a general
form for these gradient expressions can be derived using a power series expansion of
the matrix exponential in f(v,¢;). With the differentiability of Q(v) at a point v,, a

linearization of Q(v) at v, can proceed as follows.
Qv + dv) = Q(v,) + dQ(v,, dv) + r(dv) (4.25)

where dQ(v,, dv) is the variation of Q(v) at v, due to a variation of dv around v,.
dQ(v,,dv) is linear in dv such that dQ(v,, dv) = 0 for dv = 0 and »(dv) collects all
higher-order terms in dv. Disregarding the term r(dv), the power series expansion of

Q(v, + dv) becomes

f(vo+ dv,ty) = Trace{el@rer®ltsy , (4.26)
= Trace{el@Wo)+dQodv)lis) (4.27)
00 tk
= Trace{d_ ]Tj;[Q(vo) + dQ(v,, dv)]*} (4.28)
k=0 """
= [Q(v,))! Q(v,)])"! ‘
= Trace{l + ;[[—(lf)]- + ltf%dQ(vo, dv)|} (4.29)
= Trace{el®®Ntr}) 4 ¢ Trace{el@ N dQ(v,, dv)} (4.30)
= f(vo,ts) + t;Trace{el N dQ(v,, dv)}. (4.31)

Going from equation (4.28) to (4.29) higher-order terms in dv have been neglected
and the property Trace(LM) = Trace(ML) for any compatible matrices M and L

has been used. Hence we have derived the following expression.
S+ dv,ts) — f(ve,ty) = t;Trace{el2®Mi1dQ(v,, dv)}. (4.32)
If we can express tTrace{el@)NtsdQ(v,, dv)} as
t Trace{el®NsdQ(v,, dv)} = tyTrace{R(v,,t;)dv}, (4.33)

then, according to Kleinman’s lemma ({133], appendix A) we have

WIMO = t{[R(vo, t)]". (4.34)
v



Once again, this derivation is independent of the particular representation of v. That
is, in the above derivation v may be a scalar, a vector or a matrix. This result
allows the computation of explicit closed-form gradient expressions for a variety of
matrix inequality constraints. As Q(v) is'symmetric and hence diagonalizable, gra-
dient expressions can also be expressed in terms of the individual eigenvalues and
corresponding eigenvectors of Q(v) using (4.5). This procedure is illustrated further

in the appendices.

For the cost function f(v,t;) = Trace{e!®®ts} it is obvious that, if the desired
inequality constraint Q(v) < 0 is satisfied, then f(v.t;) = 0 in the limit t; —
co. The question arises if this is the case for the gradients as well. The answer is
affirmative. This is a very important fact for the optimization process to be applied
to this problem. To illustrate this property consider the scalar problem Q(v) = v!
for a scalar v'. The corresponding .inequality constraint under consideration is then
v! < 0 and the cost function in (4.4) has now the following form: f(v,t;) = e's.
The trace operator does not have to be applied in this case. The gradient for this

case is easily computed to be
0€Ultf
ov?

If the inequality is violated, the gradient expression (4.35) will obviously go to infinity

= tge”l, (4.35)

in the limit as t; — co. On the other hand, if v! < 0 is satisfied, then L'Hospital’s

rule can be applied to show the following,.

t
: ultf _ H f DY
tflLugotfe = tflglgo sy (4.36)
. 1 ‘
= Jim — (4.37)
= 0 (4.38)

1

. 1 .
where we have used —v! > 0 and hence llllltf_,oo —vle™' = co. In general it can

be shown that t7¢'% as a function of t; has minima at t; = 0 and ¢{; = oo and

! < 0. Equivalent conclusions can be drawn for the

a maximum at t; = |U—11—| for v
general matrix case as well. With the assumption that Q(v) is not a function of ¢,
and the representation of f(v,ts) in terms of the eigenvalues of Q(v) in (4.5), the

above limiting argument for the general matrix case can be reduced to the scalar



case. With v = {v',v?, ...v?} and

(v,ty) = Z ety

the partial gradient with respect to one component of v, say v¥, is computed from

df (v tf Zq:’ )] AlQEty (4.39)

As w is not a function of ¢4, the above argument is directly applicable to show

that 7 )
. Of(v, _
L

(4.40)

if all A;[Q(v)] < 0. Hence, the cost function defined in (4.4) not only has the property
that the cost function value will diminish, but the gradients tend to zero as well when

the considered inequality constraint is satisfied and ¢; — oo.

Note that the block-structured matrix inequalities (2.28) can also be handled with
this scheme. In this case the particular block-structure has to be exploited when
forming R(v,,t5) in equation (4.33). For example, consider a constraint Q(v) < 0

where Q(v) has the following 2 x 2 block structure,

Q(v) = ( ZHEZ; SZEZ; ) = [Q(v)". (4.41)

The corresponding structure for the matrix exponential of Q(v) is

U O ) B

Then equation (4.32) for this block-structured constraint is as follows.

v +dv,ty) — flvo,ty) = tiTrace{&1(ve)dQ11(v,, dv) + E12(v,)dQT,(v,, dv)
+E15(v5)dQ12(Vo, dv) + E22(06)d Q22 (v0, dv)}.
(4.43)
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Following the derivation in (4.33) and (4.34), the gradient expressions will now depend
on the corresponding block structure of Q(v) and E(v) respectively. This scheme is
easily extended to matrix constraints with more complicated block structures. This
implies that gradients can be computed for any block-structured matrix inequality
Q(v) as long as Q(v) is continuous in the parameters v. Thus the cost function can
be applied to enforce LMI-constraints according to equations (2.28), (2.29) or (3.34)-
(3.36). Explicit gradient expressions for the ARI’s representing H.,—constraints are

included in appendix B.

Convex (and especially linear) matrix inequalities form a very special class. For
matrix inequalities Q(v) that are affine and hence linear in v, gradient expressions for
f(v,ts) can always be derived explicitly. Let v!,v?, ... v? denote the individual real
scalar elements of v. For the class of affine matrix inequalities, we may write Q(v) in

a standardized form.
Qv) = Q4+ v'Q' +v°Q*+ ... +vPQ? (4.44)
P
= Q'+ Y v QF (4.45)
k=1

where Q7 and Q° are constant matrices. With Q(v) given in (4.45), partial derivatives

with respect to v' are simply

d—f((;;’l—if) = t; Trace{e®™ Q. (4.46)
Although numerically interesting, this formulation has a drawback. In most inequal-
ity constraints the scalars v* will represent the elements of some matrix (eg. a
controller representation ('y). Explicit gradient expressions as a function of this ma-
trix often provide important structural information for the problem at hand. This
information of the matrix constraint in its original form may be “hidden” in this
standardized form. This will be seen later, when gradient expressions for various
ARTI’s are analyzed. Even for the standardized form it is difficult to obtain explicit
closed—form second-order gradients. A characterization in terms of infinite series is
possible ([67]). However, using the identity (A.80) in appendix A and the tools for
finite-time cost function gradients in [64] it appears to be possible to derive com-
putable expressions for the second-order gradients. Future research along these lines

should prove valuable.



61

4.4 Summary

1. In this chapter a new scalar cost function has been defined that allows the
substitution of real symmetric matrix inequalities by a scalar constraint in an
overall optimization context. For finite ¢; this function plays a role as an exterior
point penalty function while in the limit, as t; — oo, f(v,t;) becomes an
interior point barrier function for the matrix inequality constraint. Unlike the
formulation in [15] (see equation (4.3)), this cost function is a true barrier

function in the limit as ¢; — oo.

2. Let vy € R™, vy € R, ..., v,, € K", then multiple matrix constraints of the
form
[Q](’U]) < 0., Qz('l)z) < 0, veey an(vnp) < O] (447)

are easily transformed into n, scalar constraints

lilntf——->00 T,,.ace{e[gl(vl )]ff} = O,
limg, 0o Trace{el(@ls} = 0, (4.48)

limtf_,oO Trace{e[Q"p(“np)]‘f} = 0.

This framework allows the incorporation of multiple H,,~constraints into any
performance optimization problem. It is known that the central controller is
unstable if certain subsystems of the open-loop plant have right-half plane
zeros. In the presented formulation the requirement for a stable controller is
easily incorporated by additional matrix constraints such as ATY +Y A, < 0 and
Y = YT > 0. Eigenvalue constraints on the closed-loop system can be added
in the form of inequalities [Ay + aI]TY + Y[Ay+al] <0and Y = YT > 0.

3. The technique is applicable to H.,—problems in the continuous-time domain

as well as in the discrete—time domain in terms of ARI’s or block-structured
LMPI’s (see appendix D).

4. If Q(v) is differentiable with respect to v, then f(v,#;) is also differentiable.
Explicit (closed—form) gradient expressions have been derived according to the

scheme outlined in equations (4.25) through (4.34). For many types of matrix



62

constraints the gradient computation involves only a matrix exponential and
elementary matrix computations such as matrix multiplication and addition.

Hence gradients can be computed very efficiently.

If the underlying matrix inequality is not convex in the considered parameters,
then the cost functions f(v,tf) and f(v,tf) in (4.13) and (4.15) respectively
can be used for the problem at hand. However, if the matrix function Q(v) is
convex, then, for a given ¢4, the scalar cost f(v,t;) is also convex. In general
f(v,t;) and f(v,t;) will not be convex. Convexity of f(v,ts) for convex Q(v) is
a very important feature of the cost function in (4.4) which allows its application

to a large class of important control problems.



Chapter 5

A NEW APPROACH TO H,.-SYNTHESIS

In this chapter we will concentrate only on the H,,-design problem. With the cost
function defined in (4.4) it is obvious that the corresponding H,.-constraints in the
overall H,/H—design problem are merely a set of scalar constraints added to the H,—
optimization problem. Hence it is important to numerically and theoretically analyze
the pure H,,—problem in this formulation before applying it to the overall mixed
strategy. The extension to the mixed performance/stability robustness problem will

follow naturally from these considerations.

5.1  Multi-Plant Hs~Design Problem in Terms of a Scalar Cost Function

For the pure Ho,—problem inherent to the mixed Hy/H,,~design, we assume wi(t) = 0
forz =1,2,...,n, in the open-loop systems given in (3.1). The n, closed-loop systems

subject to H.,—constraints are

OO‘C[((’O): : ( ) iy { 1.( ) il, i ( ) (51)
zoo(t) = (’cl,ooxoo(t) + Dcl,oow (1)
with
4 = A" 4+ BiCo(C}
B}"O" =5 4 %COD,%? (5.2)
Zz,oo = Dy + D, 770032

where all the relevant matrices have been defined in chapter 3. With the cost function
f(v,1y) defined in (4.4) we can now rephrase definition 3.4.1 for the pure H.,—~design
problem. Note that we consider at this point the suboptimal H,~design problem
and hence v* for ¢ = 1,2, ..., n, are assumed to be specified a-priori (a possible H o~
optimal design strategy will be discussed in section 5.4). In this case one searches for

a controller that satisfies all the n, Ho—constraints || T (Co)|le < 7' simultaneously.
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Definition 5.1.1

Consider n, closed—loop plant conditions given in (5.1) satisfying the assumptions Al
through A{. Then the Ho,~design problem for the general multi-plant output—feedback
case can be posed in terms of f(v,ts) as follows. Find a controller Cy and a set of n,

matrices X' such that the following constraints are satisfied:

L) lim Farie oo (Co X' 45 1) = 0
nTee
2.) lim f})(Co,ﬁ'i,t}z) = 0
ty— (5.3)
3.) tllll] (X, tﬂ) = 0
!—.oo
4.) X' = (X7
with
fiﬂRlc op( '707Xia7iatifl) = Trace {GARIC OF((/O’X"’Y')H“} (54)
Ip(Co,v'sthy) = Trace {72} (5.5)
fx(X'tys) = Trace {1} (5.6)
and
ARI;‘L‘,()F((’WO’Xi’Fyi) = [All+Bcloo(Rl) ( cloo c{oo]TXl (57)

+XZ[ + Bcloo(Rl) ( cl,oo)T(“Ioo]

+X BCIOO(RI) ( Z‘Ioo)TXi + (71)2( cIoo) (ql) 1(7;1,00
Ri = (71')2 ( el, oo)T cl,00 (58)
Si = ( ) I — [)(‘I oo([)c‘l oo) (59)

with n, preselected robust stability bounds v' and a set of real positive scalars t}k
(k=1,2,3 and i = 1,2,...,n,).

The real positive scalars t}k in this formulation are used as scaling variables to con-
dition the numerical behavior of the algorithm as discussed below. Constraint 2 in
(5.3) ensures that a( D, .,) < 7' and forms a necessary condition for ||T% (Co)|les < 7'
Constraint 1 imposes the actual ARI-matrix inequality constraint for the H,,—bound.

Of course, the expression for AR]é;,()p((jo, X', 4%) in (5.7) for the i** plant condition



can be replaced by any of the equivalent characterizations described in chapter 2.
The constraints 3 and 4 in (5.3) impose the symmetry and positivity constraints on
all X'. Note that all [)ilpo ‘and hence all B and S* are generally functions of the
controller parameters in (. For notational simplicity this dependency is omitted in

the remainder of this report. For the further discussion the following sets are defined.

Y o= {X:X=X,i=1,2.,n,)} (5.10)
Tp o= {tgy, ths oo B70, thyy Ty oy £15 s, thy, o, 5 ) (5.11)
G = {9 ) (5.12)

The set X collects the n, symmetric matrices X* in the above problem description,
T; is the set of all scaling factors t"f,C (k=1,2,3and 7 = 1,2,...,n,) and G collects

all the prespecified Ho,~bounds v'. With a slight abuse of notation the expressions
“ lim 7

f—o0

and do not imply an infinite number of elements in 7;. The expression “finite T

and “T; — 0o” mean that the individual elements t%; of 7; approach infinity

will refer to elements in 7; being finite and not to the number of elements in 7;.

5.2 Analysis of the Individual Cost Functions

5.2.1 Algorithm Qutline

The formulation of the multi-plant suboptimal problem with the cost function de-
fined in chapter 4 makes the solution readily amenable to gradient-based parame-
ter optimization methods. Definition 5.1.1 leads to an iterative scheme where the
set 7y can be used to properly scale the cost functions. Depending on the initjal
guesses and the maximum eigenvalues of the matrix expressions ARIE 5 p(Co, X141,
[(v)2 — ( teo) DYy o) and — X7 in definition 5.1.1, an initial set 77 can be cho-
sen such that the cost functions are numerically well defined and have reasonable
values in their gradients. Starting with 7/ a numerical optimization is performed
to minimize the corresponding cost functions in an attempt to solve all the relevant
constraints. After the optimization has converged for 77, the individual elements in
77 are increased to form ’Tf’ and the optimization process is continued. This process
1s repeated until all the relevant constraints are satisfied.

Definition 5.1.1 only states a set of constraints and their functional representation

in terms of a scalar cost function. Hence the problem formulation leads in general
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a multi-objective optimization problem. This remaining question is how to solve
the underlying optimization problem at the k** iteration. One can usually pose the
problem as a constrained minimization problem by choosing one of the constraint cost
functions in definition 5.1.1 as the cost to be minimized, say f:\RIc,op(CO’ X1 A1 th),
subject to the remaining constraints in definition 5.1.1. Alternatively one can form a
single cost function equal to the sum of all the relevant constraint cost functions over
all the plant conditions and define an unconstrained optimization problem based on
this single cost function. This latter approach has been adopted in this work.
Before this numerical approach is presented in more detail, it is important to
analyze the individual cost functions in terms of continuity, minimally necessary
number of optimization variables, existence of local minima and so forth. Particularly
important in this analysis is the assurance that the overall gradients are truly zero
only if the desired constraints are satisfied. Using an optimization strategy based on
increasing elements in 7y, these issues will be explored in more detail in the following

sections.

5.2.2  Continuity of the Constraint Cost Functions

Continuity and smoothness of the cost functions are important for the convergence
of gradient-based optimization methods. It is clear that R* and — X* are continuous
matrix functions in the design variabless Cy and X*. Given any finite-valued set 77,
this implies that f5,(Co, 7", tiﬂ) and fi (X7, t‘fg) are also continuous for all the design
plant conditions and design parameters. The matrix function ARIE 5p(Co, X', 4) on
the other hand becomes discontinuous in the controller parameters Cy at values where

i

‘oo €quals v*. This is due to

|R*| = 0, that is at points where a singular value of D
the fact that the inverse of B' appears in the matrix expression ARIE 5p(Co, X, 4Y).
The occurrence of such parameter combinations has to be avoided throughout the
optimization or else the gradient-based search would become ill-conditioned. Hence

in the following two different types of constraints have to be considered:

1. Continuity constraints: R* > 0 for ¢ = 1,2, ..n,. These constraints have to be

satisfied throughout the optimization. In particular an initial controller guess
has to satisfy all of these constraints before the optimization process can be

started.
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2. Necessary constraints for the H,,-bounds: All the other constraints and their

functional representation in definition 5.1.1, i.e. X* > 0 and ARIL 5 (Co, X'\

< 0. These constraints may be violated in intermediate phases of the optimiza-

tion.

In section 5.3 it will be shown how these constraints are actually enforced in a
practical optimization. Note, however, that such continuity problems can be avoided
if block structured LMI-characterizations such as (2.28) or (2.29) are chosen to rep-
resent the H,,—constraints. In these representations the terms R* do not appear as
inverses. However, these representations will require a larger computational effort
as the matrix exponentials that have to be computed in the function and gradient

computations are of larger dimensions.

5.2.8  The Symmetry Requirement for X* and the Number of Optimization Variables

The number of optimization variables n.,, associated with the controller parametriza-
tion Cy is fixed by the choice of the controller structure and order. If n_. is the order
of the :** plant, and n. is the specified controller order, then due to the symmetry
requirement for X* we clearly do not have to use (ng + n.)? optimization variables
to represent X" in the optimization process. In general one can define a set of upper

triangular matrices X, (: = 1,2,...,n,) as actual optimization variables with

Vi i Vi v i Y
( Xl,l X1,2 1,3 - X],(nzl-f»nc—l) Xl,(nx.+nc) \
i v i Vi
0 ‘XZ,‘Z X‘Z,B . XZ,(nx.'—}-nc—l) X‘Z,(nx, +re)
y 0 0 Xi, .. Xi :
Xt _ 3,3 3,(7zx,+nf—l) 3,(711__, +1c) (513)

2

i
‘X(nx,' Fre=1),(n,i+n.-1) X(nr. +re—=1)(n i +nc)

0 - 0 X(1711, +nc).(nz,+nr)
which requires only
: 1
ny = §(n$. + ne)(ng +n.+ 1) (5.14)

design variables per plant condition to represent X*. The desired symmetric solution
X' for AR} o (Co, X', ~%) is formed from X7 as follows: X* = X +(X)T —diag[X7],

where the additional term diag[ X"] is introduced for technical reasons to conform with
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the notational convention for function gradient computations with respect to sym-
metric matrices (see appendix A). Gradients with respect to X* are easily computed
from the gradients with respect to X* in appendix A. If X is factorized in this way,
it is immediate that X' = (X*)T, but X* > 0 is not necessarily satisfied.

An alternative factorization of X’ in terms of X' that explicitly imposes both
symmetry and positive semi-definiteness of X* (X! > 0), can be defined by consider-
ing X' as a Cholesky factor of X*. That is, X' = (XH)T X, which is symmetric and
positive semi-definite for any X*. Strict positive definiteness can be incorporated
by adding €./ to this expression for a set of small positive ¢ (i = 1,2,...,n,) to
form X* = e21 4+ (X))T X which is guaranteed to be positive definite and symmet-
ric. Note that under this factorization the constraint 4 in definition 5.1.1 would no
longer be required. Moreover, gradients of all the cost functions with respect to X*
can also be derived from the results with respect to X* as shown in appendix B. For
Xt = (X)TX?, gradients of fﬁRIC’()F(CO,Xi,*yi,tjel) and fx(X*,t};) with respect to

X' are
dfj{ff[c)()p((jo’xi’ 7i’tl_ifl) o ZXl 6/}1[{1(7,0}:‘(00’ Xi?’yi’t_ifl)
ax B oX:
O (X' tys) L o 0f% (X0 1y)

= 2X :
dX? X

Clearly, gradient expressions for the actual optimization variable X can be easily
obtained from the original gradients with respect to X".

Although the constraint X* > 0 need not necessarily be imposed if X* = i +
(XH)T X', it is immediate from (5.15) and (5.16) that X = 0 would be a sufficient
condition for all partial gradients with respect to X* to vanish. If with Xt = 0 the
gradients with respect to Cy also vanish, then the optimization will be “stuck” in a
local minimum that does not necessarily satisfy the inequality constraints necessary
for the H,—constraints. Even when the gradients with respect to Cy are not zero,
this case may lead to numerically ill-conditioned situations where the Co—gradients
are large in comparison to those with respect to X*. Numerical experimentation has
shown that these cases can indeed occur. Hence, for numerical reasons it is necessary
to impose the constraint X* > 0 for the case where X* = (X\)T X* and thus the two

parametrizations are deemed equivalent.
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In the following discussion we do not necessarily use the representation of X* in terms
of X?, as this does not alter the conclusions and would significantly complicate the
overall discussion. When a particular form of X' is considered, then this will be
stated explicitly. It should be kept in mind, however, that the actual optimization
is performed over a set of n, upper triangular matrices X* as above and hence the
overall number n,,, of optimization variables is

1 2w

Nyar = Neon + 5 Z(nx' + nt‘)(nr' + ne + 1) (517)

=1
5.2.4 Analysis of the Gradient Ezpressions

Gradients for the cost functions in definition 5.1.1 have been derived in appendix
B, using matrix results presented in appendix A. In chapter 4 it has been shown
that, in the limit as 7y — oo, the cost functions and their corresponding gradients
will be zero if the corresponding inequality constraints in definition 5.1.1 are satis-
fied. It is well known that there is an infinite number of possible controllers for the
suboptimal H,,—problem - if such a solution exists. In numerical terms this implies
that there is an infinite number of controllers Cy and solutions X* (z = 1,2,...,ny)
that satisfy the constraints in definition 5.1.1. It is precisely this reason that makes
the formulation of the H.—problem in terms of ARI’s so attractive for the mixed
H;/Ho—problem. The non—uniqueness of the suboptimal H.,—controllers can be uti-
lized to satisfy additional constraints or — as in this work — to minimize the H,—norm
or other performance measure of some —possibly different - systems. Regardless of
how the optimization problem is presented to a nonlinear optimizer, a set of possi-
ble solutions that satisfy the necessary constraints, would represent acceptable “local
minima” for the suboptimal H,,-control problem.

Note that it may be possible that all the partial gradients vanish while at the
same time one or more inequality constraints are still being violated, i.e. undesirable
“local minima” that do not satisfy the design goal. In general these situations have
to be avoided. This concern is examined here in more detail based on the gradient
information. With the proposed iterative algorithm, the analysis of these expressions
is restricted to a fixed set 7;. Furthermore, only the :** plant condition will be
considered since the same conclusions and discussion would apply to all the other

plant conditions as well.
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The gradients of the cost functions (5.5) and (5.6) are well behaved and become zero if

5.3) are satisfied. Numerical difficulties,

and only if the corresponding constraints in (
however, have been encountered and are usually related to the cost function associated
with the ARI-constraint in (5.4). This will be examined in the following section.
Assume the parametrization of X* to be X* = X' + (X)) — diag[X*]. Without
loss of generality we examine the gradients with respect to X* since in this case the
partial gradients with respect to X' are zero if and only if the gradients with respect

to X* vanish. In this case the partial gradients of
Fikteor (Cor X's 4, thy) = Trace {eARleor (@ X2

with respect to (g and X" for the :** plant condition have been derived in appendix

B and are as follows.

8fj4310,up (COa Xia 7ia t}l)

= 25 {[C5 + D5(R) T (Pi) Bhare o

[\]
R N T

o0Cy
[XlB%_*-(( cIoo) +P(:uz'(Rl)—1( cloo) )DSS]}
(5.18)
(‘)f/itRIU ) (CO’Xivﬁyi’tffl) i i i ;
= dX, = I{EARIC ()F(Aaur + Bau:rX )
+(A:Lurr + B:lu.z‘Xt)E.lAng‘op} (519)
with
ARL op(Co, X'\ 7)) = (Al X'+ X AL, + X'BL, X'+ (L, (5.20
Ri = (7 ) I — ([)cl oo) ::l,oo (521
Si = ( ) I - [)Cloo( cloo)T (52
A:mz' = Azl + Btl oo ) (DCI oo chil,oo (523
Bfwx = cloo(Rl) ( cloo)T (524
(w:zux = (71)2( ‘el, oo) (ql) wc[ 0o (525)
f)azuz = XBcloo+( cloo) D:-loo (526)
EiiRlc oF eAR c.or(Co. X',’Y')t}] V (527)

Note at this point that both expressions (5.18) and (5.19) contain one common ma-

trix, namely % EYyp,. . Furthermore, this matrix enters both expressions multi-
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plicatively such that

Bf:'*mc,up(CO’X"’YI’t}I)
3Cy

O anig o Co X 2 t51)

=0 and X =90

if t}lEilR]C,(_)F = 0. Applying the limiting argument in chapter 4 (see (4.36 - (4.38))
to this matrix expression, it can be verified that all partial gradients are indeed
zero 1n the limit as t}x — o0, if the ** ARI-constraint ARIEL op(Co, Xt 4Y) < 0
is satisfied. These solutions are therefore acceptable. Possible non-acceptable local

minima satisfying

é)fARlcil()F ((707 Xl? PYi’ t}l)

= 0
0Cy
af}“RIC'QF((?O’ Xl”yl’t}l) _ 0
)& B

with
ARIL op(Co. X'\ 7) £ 0
are the topic of the following analysis.

Let us assume that the inequality ARI&OF( Jo, X*,74') < 0 is violated in at least
one mode. First note that Ep; or 18 & positive definite matrix for any finite t%, and
AR} op(Co, X', 4%). In this case sufficient conditions for all the partial gradients to

be zero are found from (5.18) and (5.19) and are as follows.

A+ B X =0, (5.28)
and
either
Ci+ Dy(R)TH(PL)T = 0 (5.29)
or
X'B+ [(Clo) + Plua (R (D)1 1DY = 0. (5.30)
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A pr - (Co XP At
¢ = ! f1
Here (5.28) causes e

[#

W nig op CoX 5
3Cq

that have to be avoided. If either (5.28) and (5.29) or (5.28) and (5.30) are satisfied

then all respective gradients are zero and the algorithm is “stuck” at this particular

= 0 and (5.29) or (5.30) are sufficient con-

ditions for = 0. These equations immediately identify solutions

point. Note that the gradients will remain zero even as t%, is increased. Hence the
iterative optimization procedure breaks down and will not converge.

For the general dynamic output—feedback case, X* will have the following structure

X' = X.{l X, (5.31)
(Xi)" X3, )7

where the individual blocks of X' are assumed to be of dimensions compatible to
the internal block structure of the relevant closed-loop matrices (see (3.17) - (3.18)).
Utilizing this internal structure of X* it can be shown after some tedious algebra that
the partial gradients with respect to Cy can be zero only if Xi, = 0. However, this
would violate the assumption that X is positive definite and hence the constraint 3
in definition 5.1.1. This fact follows immediately from the Schur complement formula
(see appendix A). Thus, for the general dynamic output—feedback case with Xt > 0,
the overall gradients with respect to Cy will be zero only if the 7** ARI-constraint is
satisfied. This is not necessarily true for the static output—feedback case where X*
reduces to X* = Xj,. In this case there may be Cy and X' such that (5.29) or (5.30)
are satisfied.

The partial gradients with respect to X* on the other hand may be zero regardless
+ B X" = 0 can be defined in

of the considered case. Possible solutions for A? o
as follows (see e.g. [67]).

auxr

terms of the Moore Penrose inverse of B:..

Are + Broa X' =062 X' = (X7 = ~(Blyp) " Al + [ = (Bou)* i, 12" (5.32)
for an arbitrary matrix Z¢ of compatible dimensions.

Although in a numerical implementation this case will not occur exactly, numerical
experimentation has shown that these situations typically lead to slow convergence
and numerically small X*-gradients in comparison to those associated with Cy. To
gain additional insight into this situation let us assume that, during an optimization,

the following case has occurred. The inequality ARIE ,p(Co, X*,7') < 0 is violated



in at least one mode, A% and A, are both asymptotically stable, R > 0 and X* >0
such that A' _+ B

o t X' =0 for a given controller Cy. With X* > 0 the expression
Aot B

X' =0 is equivalent to the following identities.

XA +X'B X" =0 (5.33)
A X))+ Bl = 0. (5.34)

Note that (5.33) and (5.34) are also true for the respective transposes. Substituting
(5.34) into (2.35) in theorem 2.2.1 yields

(X7 = L) (AL, T + AL I(X) ™ = L)+ BL,, =0 (5.35)
where L. solves
Li(AL)T + A L+ B, = 0. (5.36)

e ! e > 0 this implies that [(X*)=' — Li] > 0
(see statement 6 in theorem 2.2.1) for ARI{ o1 (Co, X', v') < 0 is not violated. A

similar argument shows that requirement 5 in theorem 2.2.1 is satisfied as well.

With A!__ asymptotically stable and B!

By subtracting (5.33) and its transpose (both are assumed to be zero) from equa-
tion (2.33) in theorem 2.2.1 it can be shown that for A _+ B _X* = 0 the following

identity is valid.
(ADT[L, = X+ (L] — X' AL + C;

“aur auxr aux

~X'B. X' —P__(RYY(P. )T =0 (5.37)

aur

where L! solves
( i1)TLi + Li il +( *;:)TC; = 0. (5.38)

Using a standard Lyapunov argument with the assumption that A’, is asymptotically
stable, we cannot conclude that L — X* < 0 as required in theorem 2.2.1. Whether or

not this constraint is satisfied, will depend on whether the matrix C¢,_— X'B! X' —

auxr aur

Pl (RY™Y(PL)T in (5.37) is negative definite or not. From the given information

aur

one is not able to confirm this property. In general this implies that X* may be “too
small” when A' + B

auyx auxr

X' > LY (see theorem 2.2.1) for ARIL 5(Co, X*',*) < 0. Similar conclusions can

X = 0 and thereby could violate the necessary condition

7

wue are not asymptotically stable. An

be drawn for the cases when A‘, and/or A
analogous analysis of the alternative form of ARI}, ;r(Co, X',7") in (2.32) suggests

that X' may be “too large”.
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The above observations give rise to possible additional constraints to better condition

the numerical optimization scheme. Such additional constraints could be

lim Trace{elr>=XMu} = o (5.39)
t'”—»oo
lim Trace{el:=X"7'1sy = g (5.40)
t‘fs—too

where L: and L solve (5.36) and (5.38) respectively, subject to the additional stability
constraints on A%, and A’ . Gradient expressions for these functions and the stability
constraints can be derived using the formalism presented in appendix A for functions
involving grammians and eigenvalue constraints. The stability constraint can also be
imposed via a Lyapunov-type inequality and cost functions such as (4.13) or (4.15).
Such additional constraints have been tested numerically and have been found to
improve the overall performance of the algorithm. However, no analytical proof has
been found to show that these constraints are sufficient conditions for AL _+ B! X' #
0 and hence cannot in general resolve the gradient-related problem discussed above.

In summary, there are possible situations where all partial gradients become zero
without the relevant constraints being satisfied. In this case, the iterative algorithm
proposed above will fail to converge to a solution that satisfies the desired H -
constraints. The possible occurrence of such situations is independent of the par-
ticular realization of X*. The only identifiable violations of necessary conditions for
ARI{ op(Co, X*, ') < 0 are given by the fact that X* may be “too small”, violating
condition 3 in theorem 2.2.1 or “too large”. Additional constraints such as (5.39)
or (5.40) have improved the numerical behavior of the problem but do not in gen-
eral guarantee that all the respective partial gradients are non-zero when the set 7;
is updated in the iterative scheme. It is suspected that there are analytical inter-
relations between the system assumptions in [24] and [113] and the corresponding
necessary conditions for “local minima” as discussed above. However, without any
further assumptions on the sign-definiteness of ARI% 5r(Co, X*,7') no theoretical
basis has been found for this conjecture. Future research will have to show if such
interconnections exist. In short, the formulation for the suboptimal H.,—controller
design in definition 5.1.1, when solved via parameter optimization methods, may not
deliver the desired results, and modifications have to be made to account for these

cases.



Considering the above iterative algorithm, any possible modification needs to satisfy
the following criteria. Assume that a solution has been found such that, for a given set
Ty the cost functions in definition 5.1.1 are minimized and their respective gradients
are zero. If one or more inequality constraints are not satisfied, then the corresponding
partial gradients with respect to at least Cy or X* must be non-zero as the elements
of 7; are increased. This requirement ensures that the iterative algorithm outlined
above, will converge to a desired solution that satisfies all the H.,—constraints and
eliminates local minima that do not satisfy these constraints. In the following, various
perturbation approaches are presented to address this problem.

From chapter 2 it is known that whenever the :** H_ —constraint is satisfied, then
there is a X* such that AR[})‘OF( 7o, X', 7)< 0and A+ B _X* is stable. Hence

aur auxr
an obvious choice for a possible modification is to impose the additional constraints
XY+ YA+ B X7 < 0 (5.41)

Yi=(HT > o (5.42)

(A%, + B!

auxr aur

for a set of n, matrices ¥ of compatible dimensions to directly impose stability of

A+ B,

X* for all the plant conditions. This would imply that the gradients
with respect to X* will not be zero after a 7; update. However, this approach will
require an additional set of %(7%; + n.)(ngi + n.+ 1) optimization variables per plant
condition. In general these stability constraints can be represented by constraint
X" asin (4.13) or
(4.15). Such a formulation would not require additional optimization variables but is

+ B X

aur

functions defined directly in terms of the eigenvalues of A: _+ B:

auxr aur

in general not differentiable for non-symmetric matrices such as A?,_

Alternatively one can solve the so-called “{-shifted Ho,~problem” (see e.g. [13])
by introducing n, scalar perturbation parameters ¢* > 0 for which the following
modified ARI-constraints with cost functions in definition 5.1.1 are formulated for

= 1,2,...,n,.

AR[&,OF‘(()OaXivA/iaCi) < 0 (543)
ARI;?,OF( 707 Xi* 7iv Cz) = [(A:wr)T + Ct]]Xl + Xz[A:wx + C11] + ‘X'iBri.u:c‘X'i + C:Lux

(5.44)
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Note that for ¢* = 0 the original H.,—problem is recovered. This modified problem
imposes the additional constraints that all the eigenvalues of AY; have real parts

smaller than —(*. Gradients of the corresponding cost functions
f,ﬁlRlc OF (('707 Xia 71-7 Cia 2”fl) = Trace {GARIE”—)F(CO‘XI"yl’c‘)t}l } (545)
are easily found by a substituting

AL — AL+ (T (5.46)

auxr aur

in the gradient expressions for the cost function (5.4). These ¢* can be used to take

+ B X' = 0 into account which now read A’

e ) i
possible occurrences of A p- ave T

aur

I+ B.,,X" = 0 for the new cost function. Starting with an intitial set ¢, 7 =
1,2,..,ny, after each iteration and update of 77, (* can be adjusted so as to make
AL+ T+ B X' #0. Typically one would start out with a prespecified value for all
the ¢, say 1, which is reduced as t}l increases. In the limit, as t}l — oo the original,
unconstrained H,—problem is solved using such an update rule. In this case the over-
all gradients with respect to X* will be zero if and only if ARIiC‘OF((7O, XH45,¢) <0
which implies that the desired Ho,—constraint and the additional eigenvalue constraint
on Al are satisfied. This formulation has worked well in the numerical implemen-
tation but has a drawback in so far as there may be situations where the partial
gradients with respect to C'p may still be zero while the partial gradients with respect
to X, are large.

Another modification to circumvent the problem of local minima is to use an
auxiliary cost and a set of perturbation parameters. Consider the modified cost

functions fin, . (Co, X' 4%, %) as follows.
ARlIc oF ’ 7 f1

f_ff‘RIU,OF (('703 Xiﬂ 72" t}l)
= Saricor(Co, X7 t5) + ¢ () Trace[(XH)T X+ (Co)TCol} (5.47)

with
. Lodf 0<ty <1
vi(ty) = ) ; (5.48)
i { ‘—}1? of 1<ty

¢ < (th), 0<k< (5.49)
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for + = 1,2,...,n,. A typical value for k is x = 0.5 and hence ¢ < t4y. With

¢ < }1)“, 0 < & < 1it follows immediately that

L th )"
0 < lim v'(ty) < lim ( f.l) (5.50)
1 -fl T i

tﬂ—w)o tfl——»oo 1

1
< hm = (5.51)

t'fl_’oo (tfl)]_h
< 0 (5.52)
as | —xk >0for2=1,2,....,n, Hence it follows that

tililll f‘zR]C'OF(CO’ Xl”yt‘t}l) = fARIc'OF(CO7 Xl’717t}1)' (553)

f1

Thus in the limit as t}; — oo, the original cost functions are recovered. Note that
the problem formulation in definition 5.1.1 does not take into account the possi-
ble occurrence of unbounded 'y and X*. One desirable side effect of the above
modification is that for any finite t}l the cost fjiRIc,op( 70,Xi,7i,tj,1) will be fi-
nite if and only if Cy and X* are finite. Hence finiteness requirements on (' and
X" are directly incorporated into the cost function. Moreover, it is well known
that the auxiliary term T'race[(X")TX* + (Cy)TCo) is convex in Cy and X* (see
lemma A.1.6) and hence possible convexity properties of the original problem are
maintained as the sum of convex functions is convex. The scalars ¢ allow the
weighting of ¢'v*(t%,){Trace[( X*)T X*+(Cy)T Co]} such that fjml(,‘op( Yo, XUt 1) >
vty ){Trace[(X)TX' + (Co)TCo]}. Let us now analyze how these additional
terms alter the gradient expressions. The gradient expressions for the auxiliary cost
Trace[(X)T X' 4+ (Co)TCy) are well known and the overall gradients for the new cost

function fjmlc’w((?o, Xt 4, t4,) are as follows.

O farie op(Co, X171 Ofirt. on(Co, Xi 7 1 o
ARIL,,UF(‘ 0. 11) _ AR1(,,OF(' 0' 7 f]) +2ci }1)X' (5.54)
Xm dX1
(")fi ~ C'aXia iati 82‘ - C,Xi, i,ti . .
‘““"’OF(,,‘: AL D fAR’L'OF(‘ i f1)+2c'1/’( £ )Co. (5.55)
d(/() d(/o

afARIC,OF(CO-X‘,’Y"t}I)
aCy

= 0 and

With (5.18) and (5.19), necessary conditions for
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(fARI( ()F((D X‘,'Y‘ til)
ax:

= 0 are as follows.

260 {[C5 + Di(R) ™ (Pr) T B,y (5.56)
X[XIB';_F(((NZ[OO) +P(:ur(Rl) (D:*loo )D;.'S]}T-F‘Z('illl(ttfl)(w() :0

and

{EARI( ()F(A:‘lul‘ + B:zuxX) + (A:qu: + B;uzX )EAR]L Up} + 2ci’/i(t}l)Xl = 0.

(5.57)
8 ry . (Co, X At O mr. - (Co X oty _
Now, for any finite z‘fl, AR]("“FG(C:: ") =0, ARI"IOF{;X. T ) =0and X* >0
it immediately follows that
(Al + B XY 1s asymptotically stable (5.58)
('Aauz+B:LurXi| # O) (5‘9)
Ci+ Diy(R) ™ (PL)T # 0 (5.60)
X' By + [(Clioo)™ + Pro (R (Diy o) 105 # 0. (5.61)

+ B! _X*. However,

auxr

Note that this formulation implies asymptotic stability of A? _
with the results in chapter 2 (see corollary 2.2.1), it is known that, if a controller
satisfies the i"* H,,~constraint, then there will always be a X' that satisfies this addi-
tional requirement and hence this formulation does not represent a loss of generality.
Most importantly equations (5.58) — (5.61) imply that if the partial gradients are zero
for a given t}l but the corresponding ARI-constraint is violated, a change in t’}l will
result in non-zero partial gradients for both, (o and X*. This in turn implies that
an iterative scheme that minimizes the cost functions iteratively based on a strictly
monotonically increasing sequence tf1 will not converge to local minima that do not
satisfy the desired Ho,—constraints, and hence the likely occurrence of such local min-
ima is eliminated. Thus, for a large but finite tﬂ, the gradients of the modified cost
function will be zero if and only if all the constraints are satisfied. Furthermore, this
scheme requires only a minor modification of the cost functions in definition 5.1.1,
and has worked well numerically.

Some final comments on the numerical schemes are in order. Numerical simulation

+ B}

,i . - « -
X' In combination with

has shown that direct stability constraints on Af__
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the other perturbation methods is efficient. However, the additional optimization
variables required to enforce these constraint in terms of a Lyapunov inequalities may
be considerable and therefore numerically harder to tackle. All the above schemes
either require additional optimization variables or involve a perturbation scheme.
Ideally one would like to have a scheme in which zero gradients directly imply that all
the constraints are satisfied for any finite set 7;. At the same time this property should
be accomplished without the introduction of additional optimization variables so as
to not slow down the overall numerical computations. In general the various forms for
the ARI-constraints such as (2.22) - (2.24), (X*)'ARIcor(Co, X', ¥ ) (X)) < 0 or
their LMI-representations as well as other alternative ways to enforce X* > 0 (for
example (X*)~! > 0) may provide possible alternative modifications or additional
constraints to arrive at a numerically effective scheme. Research along these lines

should be pursued in the future.

5.3 Numerical Approaches and a Penalty/Barrier Function Approach to the Multi—
Plant ‘H.,—Design Problem

In this section all the above results and the proposed iterative scheme to solve the
Ho—design problem are combined into one computational framework. In particular
a penalty/barrier function approach is presented to solve the general multi-plant
suboptimal H.,—design problem.

Due to the iterative nature of the proposed algorithm the problem can be solved
by a sequence of constrained optimization problems. In this case one selects one of
the cost functions in definition 5.1.1, e.g. fip, o, (Co, X', 4, t};) as actual cost to be
minimized while all the other inequality constraints are enforced as constraints in a
gradient-based optimization. If the underlying inequality constraints are not convex,
one may want to redefine the inequality constraints in definition 5.1.1 in terms of cost
functions such as in (4.13) or (4.15); namely in terms of the eigenvalues of the matrix
expressions. As mentioned before, these types of cost functions are differentiable as
long as the corresponding inequality constraint is symmetric. Gradients are readily
derived from the gradients for the trace type cost function (see appendices A and B).
This type of cost function has the advantage that it will be zero if the corresponding
constraint is satisfied independent of a scaling factor ¢;. Using a penalty cost function

to represent the constraints in definition 5.1.1, this is true only in the limit as the
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corresponding tj‘l(‘),.’i) — oo. This is not desirable if the optimization problems are
solved via constrained minimizations as in this case constraints may be defined only
as scalar inequality or equality constraints requiring an exact upper (lower) bound for
the inequality constraints. For finite f'j’l(z,:;) the exact function value of the individual
cost functions is not known exactly even if the inequality constraint is satisfied and
hence constant upper bounds for the cost functions (and hence the constraints) may

not be defined.

Consider for example the cost function fle[c,OF(CO, Xi,fyi,t}l). The only knowl-
edge we have is that 0 < f;,RICYOF(CO,Xi,’y’,t}l) < ng + n. (see chapter 2) if the
constraint ARIE 5p(Co, X*,7") < 0 is satisfied. However, if ARIL ox(Co, X*,7') < 0
is satisfied, then all eigenvalues of ARI{ ;r(Co, X*,~') are negative real and hence
there exists a large but finite ¢y, such that fjm,a“p((,}'o, X' 7' ty) < 1. Thus, for the
solution of the optimization problem via constrained minimizations, the defined cost

functions in definition 5.1.1 can be utilized as scalar inequality constraints as follows.

fziqRICV()p ((70‘ Xl? 723 t}]) < 1 (562)
fo(Co v tyy) < 1 (5.63)
Jx(Xiths) < 1 (5.64)

for any set T;. If these constraints are satisfied for ¢ = 1,2,..n,, then all the related
mequality constraints are also satisfied.

In this work an alternative route has been chosen to solve the H,,—~design problem
utilizing the cost functions defined in definition 5.1.1. Instead of solving a constrained
optimization problem for each 7, an overall cost function Joo(Co, X, G, T;) is defined
that includes all the individual penalty functions in definition 5.1.1. Namely

np

']00((-707‘1” gv’]—f) = E [ filRI(v,()F(CO’Xz’FYi’tj'l)

=1
+ ciz/i(t}l){T7'ace[(Xi)TXi 4 (Co)TCol}
+ fp(Co, 7', ) (5.65)
where the individual cost functions, the sets X', G and 7¢ and the scalars ¢ and

V'(t%,) have been defined previously. The dependence of J..( Y0, X, G, Ty) on these



81

scalars has been omitted in this notation. They will in general be constants during
the optimization process as described below. It is easily verified that J..(Co, X, G, 7})
has the same properties as the individual cost functions in definition 5.1.1. That is,

a controller 'y and a set A’ satisfy all the essential constraints if and only if

lim Joo(Co, X,G6,75) = 0 (5.66)
f—’O()
and hence
lim Joo(Co, X, G, 7T7) =0 & ||IT5(Co)llee < 7' (5.67)

Tj—oo
On the other hand, if one of the constraints is not satisfied, then in the limit as
T; — oo, the overall cost function J( Yo, X', G,Ts) will become unbounded. With
this new cost function, an unconstrained optimization problem for the multi-plant

suboptimal H.,~problem can be defined as follows.

Definition 5.3.1

Consider n, closed-loop plant conditions as in (5.1) satisfying the assumptions Al
through A4. Then the Ho, —design problem for the multi-plant output-feedback case in
terms of Joo (Co, X, G, Ty) is as follows. Given the set G of user—specified My, ~bounds,
find a controller C5 and a set of matrices X* that solve the following minimization

problem
glillll' Joo(Co, X, G, Ty) (5.68)

iteratively for monotonically increasing values t}k (k=1,2,3,:=1,2,..,n,) in Ty
such that

}1_1}(1)0 Joo(C5, X7, G, T5) = 0. (5.69)
Hence the design problem is solved via a series of unconstrained optimization prob-
lems. Once the optimization (5.68) has converged for a fixed (7;)* at the k** iteration
step, the elements of (7;)* are increased to form a set (7;)**! for which the optimiza-
tion (5.68) is repeated and so forth. This iteration continues until all the constraints
have been satisfied. If the specified H.,~bounds are chosen too tight, then the al-
gorithm will terminate at some iteration because no sufficient decrease in the cost
function can be achieved in this iteration. Specific rules for updating the set (7;)* as
well as the role of the scalars ¢ and l/i(tj,l) in this formulation along with a possible

choice of initial guesses for the controller Cyy and the set X" are discussed next.
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5.8.1 Initial Guesses, Initialization and Iteration Update Rules

Good initial guesses are vital for any nonlinear optimization problem. For this prob-
lem, numerical simulations have shown that an H,-optimal controller for the closed-
loop system . (Co) := [AL, (B )%, (C:.)7,0] has provided a good initial guess -
if such a controller with the desired structure and order is available. One method to
find a structurally constrained controller is given in [64]. In [139] some connections be-
tween such a Hy-optimal controller and the resulting Ho,—norm for the closed-loop
system have been investigated. Any initial controller guess, however, must satisfy
(v')* — (D4 )TDy . > 0 for i = 1,2,..n,. As discussed earlier, these constraints
are necessary for the optimization problem at hand to be continuous in the controller
parameters and hence have to be satisfied throughout the optimization. If the initial
controller guess is stabilizing one or more plant conditions, then the corresponding

initial guesses of X* can be determined by X' = L, where L' solves
(AL, + LA, + (C)TCL =0 (5.70)

which implies that the initial ARI% 5p(Co, X*,7") reduces to

ARIL op(Co, X' ') = Pl (R (Pl.)" (5.71)
with
Pr:uz = XiBil,oo + ((7;-1,00)TDil,oo‘ (572)

If the initial controller guess stabilizes the 7** plant and satisfies the i** H,—constraint,
then a possible initial guess for X' is the corresponding ARE-solution that can be
found with any Riccati equation solver.

If the initial controller guess does not stabilize the :*" plant, then any symmetric,
positive definite matrix X* will suffice. In any event, we will always be able to define
an initial set ¥ of symmetric positive definite matrices X*. The initial set 7; is
chosen such that the overall cost function Joo(Co, X',G,7;) has a finite value and
the corresponding partial gradients are well defined. The auxiliary parameters ¢,
i =1,2,...,n,in (5.65) are initially set to values such that the sum of the H,-related
cost functions is larger than the auxiliary cost in Jo(Co, X,G,7T;). The parameter

& is assumed to be preselected and is constant throughout the optimization process.
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In general this additional parameter has been introduced to assure that the auxiliary

cost is zero in the limit as 7y — oo.

Now assume that at the k' iteration a controller (C5)* and a set (X')* have
been found for a given fixed set (7;)* and a set of scalars (¢')*, 7 = 1,2,...,n, such
that Joo((Co)¥, (X)*,G, (74)¥) is minimized and all partial gradients of the function
Joo ((Co)¥, (X)*,G, (T;)*) are zero. The question arises how to adjust (77)* +— (7;)*+!
and (¢')* — (¢')**1 1 = 1,2,...,n, such that the problem at the subsequent (k + 1)t
iteration is well defined. Possible update rules for (7;)* may in general follow two
different strategies. Assume that some but not all of the inequality constraints have
been satisfied at the &** iteration. In a penalty function approach one would then in-
crease only the elements in (77)* that correspond to active constraints while elements
in (7;)* corresponding to non-active constraints would be kept at their old value. In
such a set up the individual cost functions corresponding to non-active constraints
would still contribute to the overall cost function Jo,((Co)**!, (X)**1, G, (7)) in
the subsequent minimization. At the same time the penalty functions corresponding
to active constraints become dominating in the overall cost function and the partial
gradients. Alternatively, in a barrier function approach, one can choose large val-
ues for elements in (7;)**! corresponding to non-active constraints. Knowing that
the individual cost functions and their gradients will be approximately zero for a
sufficiently large value of the corresponding element in (7;)¥*!, this is equivalent to
a Lagrange multiplier approach in which a non-active constraint is deactivated by
choosing a small Lagrange multiplier for this specific constraint. In this formulation
the individual cost functions associated with non-active constraints will effectively
act as barrier functions rejecting any choice of controllers ((%)**! and (X')**! that

violate these constraints in the subsequent iteration.

In the following, an update scheme is presented resembling a penalty function
approach. The adaption of this scheme to a barrier function approach is stated later.
To keep the notational complexity to a minimum, (#*(t,))*) and (v*( L)) will
be abbreviated by (#')* and (v)**! respectively. The following update scheme for
the i** plant condition is one of many possible approaches one can pursue. Assuming
that the k' iteration has been completed successfully with a controller (Co)* and a

set (V)% the update for the next iteration proceeds as follows.
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L. t4,-Update:

e If the i ARI-constraint is satisfied, let (¢},)**! = (t;)*, otherwise let

1

() = = - —— (5.73)
n MARIE o p((Col¥, (X5, 47)]
o Set (v))F! = W and find the largest (¢)**! where 0 < (¢')**! <
11

[(tiﬂ)k"'l]" such that the following conditions are satisfied:

fZRIC'OF(((?O)ka(Xi)karyia(t;ﬂ)k_’.]) (574)
> 10(e) () Trace[[(X)HT (X" + [(Co)TT4(Co)* T}

— (’)f/aR]C’QF((jO’ X‘i’ 71.’ (t}])]"+1)

o{ : | co=(co)t }
9o ,(’;?;Ef(".)):
> 10 () () e {(Co)*) (5.75)
and, if
afimc (COaXia’Yia(ti )k+1)
&1 ARIcor e f1 lco=(co)k}>1’ (5.76)
Xl:(xl)k
then

af;R]C’OF((’:’O’ Xi* 71.’ ( ’if])k+])

6{ . i Co=(Co k}
dX X(3=(X'))k
> 10 () )R E{(XF) (5.77)

2. t’}2~l,1p(1ate:

Select (t%,)**! > (t%,)* such that

i VK1 10
U™ = s o = )

Co=(Co)t ]



3. t}S—Update:

If the i positivity constraint —(X*)* < 0 is violated, let

; 3
t \k+1 ~
or else select (t3)"*1 such that
(Ci)k+1(”z’)k+1(Xi)k > (t}s)k+16—()(‘)"(t'f3)k+l. (5.80)

First note that this scheme guarantees that all elements of 7; are monotonically in-
creasing functions of the iteration number and do not decrease. The t,—updates
assures that the ARI-cost functions associated with the active ARI-constraints con-
tribute more to the overall cost than those corresponding to the non-active con-
straints. The same is true for the t’h—updates when the ¢** positivity constraint
—(X")* < 0 is violated. The role of the scalars ¢ and »* will become more clear by
the analysis of the gradient expressions. These gradient expressions are readily found

from the sum of the gradients of the individual cost functions.

8.100((70,:1’,9’,(’]})“1) ~ nz, [ afilRlcyup(CO?Xiv'Yiv(tj‘l)k+1)
0C o=(Co)" B ( o=(Co)*
2, it P 9C o=t
OH(Co, 7, (#,)1) r
+ 60 (Joz( ]O)k («.).81)
Q0 X|=(X|)k
+2(Ci)k+1(yi)k+1( 70)k ]
0oc(Co, X, G, (T)**) _ Wkt (Co X7 1))
B Co=(Co)* — v Co=(Co)*

_(tj’a)k+le—(X')"(t'f3)k+‘ + z(ci)k+l(yi)k+l(xi)k.
(5.82)
The update rules (5.74) — (5.77) assure that (c¢)**'(v*)** {Trace [[(X)F]T(X)* +

((Co)TCo)*]} do not overwhelm the other Ho,-related cost functions and their re-

spective gradients. If (t45)**! is chosen as indicated, then (¢ )**1(y)¥1(Xi)* >

C-A -
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(79}}_3)’”’1e_(xl)k(t'ﬂ)k+l and hence at the beginning of the (k + 1)** iteration the par-
+ B (XM = 0.
Although the (k + 1)™ iteration may converge to a parameter combination where
—(tiﬂ)kﬂe_(X')k“'ﬁ)H] and 2(¢*)* 1 ()1 X)¥ cancel each other, due to the term

2(¢))* 1 (1)F1(C)* in the controller gradients the overall gradients force the opti-

tial gradients with respect to X' are not zero, even if A:

aur

mization to improve on the eigenvalues of ARIcop(Co, X, 4, (t41)¥*!). Note that
. . _ £y =1t .. .
one can also enforce X* > 0 by the cost function Trace {e*)" "5} This implies

that A* + B!

auxr auxr

(X*)¥+1 is stable if the combined gradient with respect to X' are zero
after the (k4 1)" iteration has been completed. This additional problem is specific to
the penalty/barrier function approach and is not present if the algorithm is executed
as a sequence of constrained optimization problems.

The update rule for the n, scalars (tj».z)k'“ 1s not as obvious and requires some more
analysis. As discussed earlier, the n, constraints —R' > 0 are necessary constraints for
the minimization problems to be smooth and hence have to be enforced throughout
the proposed iterative optimization procedure. Assume that —R* < 0 is satisfied for
a given fixed controller Cy and consider the following bounds for f5(Cy, *y’,t}.z) and

the maximum singular value of its gradients for the :** plant condition.

f})((70,7i,t3,2) = Trace {e_R't'fz} (5.83)
< Ty, MR, (5.84)
and
af})((7077i1t}2)

A=) = o{2uDene™ P (Dao)" D} (5.85)
0

< 28, MR 6( Do { Dy} { D} (5.86)

For a fixed controller it is easily verified that the upper bound (5.84) for the cost
function f;(Co, 7', t%,) is a monotonically decreasing function of t, (assuming — R’ <
0 is satisfied). The upper bound (5.85) for the gradient expressions on the other hand

exhibits an interesting behavior. It is easily verified, that (5.85) is a monotonically

increasing function of t%, for t}, < ;\(+R,.)—, it has a maximum at t}, = ﬁ and
decreases monotonically for larger values of t‘ﬁ. Graphically this implies that (5.85)
1

has a “hump” at t}.z = T(—th) Selecting (tj,‘z)’“+1 much larger than TR in the above

scheme implies that both the function value of f},(Co,7*,t},) and its gradients will
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be small at the beginning of the (k + 1)** iteration and would dominate the overall
cost function if these constraints are violated during a line search. Numerically the
above update rule for (t}z)k+1 implies that the cost functions f5((Cp)*+!, ~*, (th,)*th)
will act as barrier functions, effectively enforcing the continuity constraints R > 0
during the (k + 1)* iteration.

As mentioned above, alternative update schemes may be devised. In particular,
the explicit numerical values chosen for the updates have been derived from numerical
experimentation utilizing the MATLAB optimization toolbox. The presented scheme
represents a mixture of penalty and barrier function approaches. For the constraints
that are allowed to be violated during intermediate phases of the algorithm, the
above update scheme realizes a penalty function approach. The specific choices for
(tiﬂ)kJrl incorporate a barrier function approach so as to guarantee continuity and
hence smoothness during the subsequent optimization.

In general the above update scheme can be easily adopted to an overall barrier
function approach where not only the continuity constraints are enforced via bar-
rier function ideas, but all constraint functions corresponding to non-active matrix
inequalities. If the H.,—constraint and hence the corresponding matrix inequality
is satisfied at the i** plant condition, then one would choose large () FFT, (1)
and (tj.3)"'+1 for all the penalty functions associated with this He—constraint. With
such an update procedure all penalty functions associated with the :** H,, —constraint
will act as barrier functions in the (k + l)th iteration, avoiding possible controllers
(Co)**'and (X*)**1 that would violate any of the non-active constraints. For a more
detailed discussion of penalty/barrier function approaches the reader is referred to

[63] which contains an excellent treatment of these methods.

5.4 A “Top Down” Approach and the H,,—Optimal Design Problem

The numerical solution for the multi-plant H.,—problem in terms of Joo(Co, X, G, Ty),
starts with initial guesses for the controller Cy and A’ that may not satisfy any of the
constraints in definition 5.1.1. The n, desired H.,~bounds 7' are given a—priori and
the optimization procedure attempts to satisfy these bounds. With the introduction

of n, additional optimization variables 4} and the corresponding set

Go={ %% %"} (5.87)
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a “Top Down” approach can be developed as described below.

Definition 5.4.1

Consider ny, closed-loop plant conditions in (5.1) satisfying the assumptions A I through
A4, the set Gy, the extended set ’ff = {7y, t},, ... t"”} where the set T; has been
defined previously, and Jo(Co, X, G, T;) as given in definition 5.3.1. Then a “Top
Down” H,-design algorithm for the multi-plant output—feedback case is defined as
follows. Given the set G of user-specified Ho,~bounds, define the following cost func-

tion

o bl r 1)2 Y27t
Joo((707 ‘/Y’ gv gOa ’]}) = JOO(C()a ‘X,v g(), 7}’) + Z 6[(’70) - ) ]tf" (588)
=1

and find a controller 5, a set of matrices X'* and a set G that solve the following

minimazation problem

min joo((70,/t',g,g0, ’j'f) (5.89)

0,¥,G0

for increasing values ofz‘fk, (k =1,2,3,i=1,2,....n,) and {t}y,t‘ftw,...,t}l,’;} in ’Tf
such that

lim Jo(C3 X", G, G5 77) = 0. (5.90)

=00
Note that in this formulation Jo(Co, X, Go, 7;) defined in (5.65) is not a function
of the prespecified set G, but a function of the optimization parameters 3. The
(user-specified) fixed bounds 4* appear only in the additional term

np

Ze -0 (5.91)

This implies that (5.90) is satisfied if and only if

AR[?()F((YD, Xia7l§) < 0
([)cloo) :;1,<>o - (7(23)21 < 0
Xt < 0

(%) < (4)°

for 2 =1,2,...,n,. This set of inequalities directly implies that

ITL(COlZ, < (7)° (5.92)
(76)" < () (5.93)
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and hence all specified H,,—constraints are satisfied if (5.90) is satisfied. Gradient
expressions for Jo(Co, X', Gy, Ty) with respect to (v;)? are included in appendix B.
Note that, without loss of generality, we can optimize over the n, scalars (v})%, as
all relevant cost functions are functions only of (43)? and (4%)* and not of 4} or
v'. Gradients of the term Y17, elO8? =Yy, 61 the other hand are trivial scalar
gradients. This formulation has a significant advantage over the previous formulation
in that it allows the definition of “good” initial guesses if a controller is available that
stabilizes all plant conditions simultaneously. A possible scheme for choosing the
initial guesses for Cy, X" and Gy and solving the corresponding optimization problem

to satisfy all desired H,,~constraints can be formulated as follows.

1. Find any initial controller Cy (with the desired structure and order) that simul-

taneously stabilizes all plant conditions.
2. For 1 =1,2,...,n, choose the initial set Gy such that

(7%)* > I T5a(Co)ll2- (5.94)

3. For this initial set Gy and 7 = 1,2,...,n, determine an initial set X’ from
ARIE op(Co, X' 7) + el =0 (5.95)

for some small € and the fixed initial controller guess C using a standard Riccati

solver.

With these initial settings all but the n, constraints (7)? < (7*)? are satisfied. Hence
the iterative optimization to solve this problem will have well defined initial guesses.
The subsequent iterative minimization process will only have to additionally enforce
the constraints (5.93). As soon as these constraints are satisfied, the iteration will
terminate and all H—constraints are satisfied.

This formulation also gives rise to an He,—optimal design algorithm. Assume
that all elements in the set G are zero. This implies that the optimization problem
in definition 5.4.1 attempts to find a controller that guarantees an infinite stability
radius for every plant condition, i.e. | T2 (Co)|%, < 0 for i = 1,2, ...,n,. Hence if we

apply the algorithm in definition 5.4.1 to this problem, the optimization process will
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try to satisfy all the relevant constraints and additionally minimize the functional

7 124t . PR . . .
Yol ")y which amounts to a minimization of all considered Hoo—norms. This

1=
is a novel approach to solve the multi-plant H,—optimal design problem, although

Ho.—optimal controllers often exhibit many undesirable properties.

"

5.5

5 Heo—Design Examples

All the examples in this section have the following open—loop state-space description.

i(t) = AW(t) + Buwi(t) + Biu'(t)
2(t) = Cyr'(t) + Diwi(t) + Digu'(t) (5.96)
yi(t) = Ciai(t) + Diwi(t) + Digu'(t).

That is, all matrices corresponding to possible H;-objectives are assumed to be zero.
The number of design plant conditions is evident from the superscripts of the corre-

sponding system matrices.

5.5.1 FEzample |

The first example considered is taken from [88]. In accordance with the notation in

5.96) the open—loop system matrices are as follows.
P p sy

—0.3908 —0.4565 1.2657
Al = 1.4453 —1.0491 —-1.2077 |,
—0.1288  0.6744 1.0324

0.0488 —0.4275
Bl=| 03608 |, Bl=| —04470 |,

0.3564 —0.9172
3= (09420 00144 0.1187 ), DL, =0, DL, = 1.3575,

(3 =( —1.5567 —1.9432 —0.0914 ), D, =0.5185, D, =0.

The plant is open—loop unstable and all the relevant subsystems have no invari-

ant zeros on the jw-axis. However, the open—loop subsystems (A, By, C3, Dg;) and
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(A, B3, (3, Dy3) have invariant zeros in the right—half plane. The plant also satisfies
the assumptions imposed in [24] for a regular H,,~design problem. Hence the two-
Riccati equation approach to the suboptimal H.,—problem can be used to compute
the central controller. Utilizing this approach it can be verified that the smallest
achievable closed-loop He—norm ||T1(Co)||e is approximately 2.1426. Hence it is
known that for v < 2.1426 no H.,-suboptimal controller exists. Using the discussed
penalty function approach, a controller has been designed that satisfies a specified
robustness bound. For the design the H.,~bound 7' = 2.2 was chosen, which is
rather close to the optimally achievable H,,—norm. The controller to be designed is a
dynamic, strictly proper full-order (third-order) controller. The following controller

has been obtained. Its state-space realization is given by

—69.52247277 4.09046301 —132.24247153
Ac= | —159.84943026 —13.73735121 92.97199999 |,
—13.99956517 —0.63916776 —1.78390805
7.79934347
B. =] —30.37935405 |,
—1.63224803

Ce=( —39.68076598 0.62004741 —45.76734663 ), D, =0.

Since the plant satisfies all the requirements for the two-Riccati equation approach,
the central controller for 4! = 2.2 has been computed as well to allow a comparison
between the designed controller and the central controller. The state-space realization

of the central controller is as follows.

—1.72346585 —1.01231441  —9.35407417
A= 0.42346443 —0.64560199 —6.29074683 |,
—19.75912227  9.71850563 —45.31150942
—0.29369100

B.=| -0.14518215 |,
—8.24424158
Ce= (075994761 0.05747133 16.36721454 ), D. =0.

Some properties for the design and the central controller are summarized in tables

5.1 and 5.2 respectively.
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Table 5.1: H,—design example 1: Closed-loop properties for the designed controller.

Table 5.2: H,,—design example 1: Closed-loop properties for the central controller.

Specified 4!

2.2 (6.8485 dB)

Achieved ||TL (Co)||oo:

2.1987 (6.8433 dB)

Closed-loop system poles:

A = —80.4958

Ay = —2.7017

Asq = —0.3957 £ 1.8170;
Ass = —0.7312 £ 1.1993;

Controller poles:

Ao = —85.5022
Aez,z = 0.2292 £ 2.1625)

Specified !

2.2 (6.8485 dB)

Achieved ||T'L (Co)||co:

2.1991 (6.8449 dB)

Closed-loop system poles:

Ap = —43.2017

Ay = —2.5091

Azq = —0.3991 £+ 1.7837)
Ase = —0.7895 £+ 1.2618;

Controller poles:

Aa = —48.0839
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Both controllers stabilize the system and the achieved closed-loop H..-norms for
both controllers are almost identical. It can be verified that —0.3991 £ 1.7837;
and —0.7895 £ 1.26185 are zeros of the open-loop subsystems (A, By, C3, D3;) and
(A, B3, Cy, Dy3) and hence are necessarily poles of the closed-loop system with the
central controller in the loop (see e.g. [45]). The corresponding closed-loop -poles
for the designed controller, namely —0.3957 £ 1.81705 and —0.7312 & 1.1993; are
close to the zeros of (A, By, (s, Dsy) and (A, By, Cy, Dy3). However, they are numer-
ically not exactly equal. This represents a departure from the properties that the
central controller is bound to exhibit. Both controllers are unstable suggesting that
there may not be a stable controller that internally stabilizes the system and satisfies
the specified Ho—bound. Singular value plots for the closed-loop transfer function
T2 (Co, s) from w! (s) to z1 (s) for the designed controller and the central controller

are included in Figures 5.1 and 5.2 respectively. These plots confirm that the specified

Ho~bound has been satisfied by both controllers.

In a second design the H,,—bound was chosen to be 4! = 2.16. Using the presented
penalty function approach a controller has been found that satisfies this bound with
ITL(Co)||oe < 2.16.

[ 94.72003708 116.54307959 66.04512426
A, = | —66.68926127 —104.71656006 20.54296555 |
—15.73792161 38.51746238 —181.78169890

[ —153.54027409
B, = 107.75005408
\ 19.22234533

Co = (0.04202796 —11.19723338 33.22247777 ), D, =0.

The achieved |72 (Cp)||o is 2.1579 (6.6806 dB) which is only about 0.01 above the
optimally achievable H,,—norm for this example. However, the large matrix entries

suggest that an optimal H.,—design would require a high-gain controller.
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Figure 5.1: Ho—design example 1: Singular value plot of T (Cy, s) for the designed

coutroller.
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Figure 5.2: H—design example 1: Singular value plot of T} (Cy,s) for the central

controller.



5.5.2  Ezample 2: The Two-Mass Spring System

The two-mass spring system has been treated extensively in recent publications.
This plant was for example the benchmark problem of the 1990 American Control
Conference and references describing and analyzing this plant in detail are plentiful.

The open-loop system is given by

0 1 0 0 0
1 -4 0 £ 0 1 - 1 1.1
‘i. t — m m T t+ m oot +BU t
(* P EXC R I PO 0
£ 9 & _1
1 _ 1 .
20 = (=101 0)2't) (5.97)

y'(t) = Ciz'(b).

The matrices B} and (7} are specified later depending on the particular design problem
under consideration. This system represents the dynamical model of two masses that
are connected with a spring. In this description both masses are assumed to have
the same mass m. The parameter & in (5.97) represents the spring constant of the
spring connecting the two masses. The nominal values for these two parameters are
mo = 1 and ko = 1. The states r{(¢) and xl(¢) represent the position of the first and
second mass respectively. The states x1(¢) and z}(t) are the corresponding velocities
of the two masses. For this design example it is assumed that both masses assume
the nominal value m = mg = 1. With this assumption and the matrices B} and C} in
(5.97) the system description takes into account possible uncertainties in the spring
constant k. Let the true spring constant k& be denoted by k = ko + Ak where Ak is

the perturbation of k around ky. Then it is easily verified that

0 | 0 0 0 1 0 0 0
k k k ki 1
mo mo — mo mo + my Ak ( _ 1 0 1 0 )
0 0 0 1 0 0 0 | 0
L . k0 —k g - .
mo mo mo mo mo

and hence

Al = Al + BIAKC) (5.99)

nom
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where A!_is the nominal open—loop system matrix for m = my = 1 and k = ko = 1.
With the discussion in chapter 2 it can be verified that the uncertainty block A(s)!
is identical to Ak; namely A(s)! = Ak. Hence the open-loop system for the H.,—
design problem with Ak as uncertainty is the system (5.97) at the nominal plant
condition m = mg = 1 and k = kg = 1. For this uncertainty various design cases are
now examined. The open—loop system is unstable, the suboptimal H.,—problem is
singular and the subsystem (A, By, C, D3;) has zeros at s = 0 and lence on the jw-
axis, regardless of the choices for B} and CJ]. Thus neither the DGKF-approach nor
the Stoorvogel approach are applicable to this problem. Depending on the matrices
B; and ('} and hence on the information available to the controller and the allowed
actuation through Bj, three different design situations are considered in the following

subsections.

5.5.2.1 Case 1: Measurements of xi(t), z}(t) and Actuation on the First Mass

For this design case both mass positions are available to the controller while a force

may be applied only to the first mass. Hence the corresponding matrices B} and C}

1 0 0
Coa= |t .
' 0 010

For this design case it follows immediately by inspection, that only positive values

are as follows.

B} =

o o - O

for k can be tolerated. That is, “active” springs (for example an additional force)
between the two masses is not permissible as we can only act on one of the masses.
Irom these considerations it follows immediately that the maximum tolerable Ak
for k = ko = 1 is given by |Ak| < 1. This implies that ||A(s)!]lc < 1 and hence

™~

the optimally achievable H.,-norm of the transfer function T (Co, s) from w!_(s) to

2! (8) 18 ||ITL(Co)|lee = 1, which in turn implies that H,,~bounds 4! < 1 cannot be
achieved. For the following controller design an H.,,~bound 4' = 1.0005 has been
specified. The controller to be designed is a dynamic proper full-order controller
with structural constraints defined by the controller system matrices below. Using

the penalty function approach, a controller satisfying these requirements has been



97

designed. The (structurally constrained) controller realization is as follows.

0 1 0 0
. —4.96497865 —4.81507032 0 0

0 0 0 1 ’

0 0 —8.34902647 —3.16030032

o O = O

0
\ 1
Ce= ( 67.97641069 12.13736699 193.16591187 101.09971272 ) ,

D, = ( —69.72761009 32.89950444 )

The singular value plot of the closed-loop transfer function T (Cy,s) from w! (s)

to z! (s) in Figure 5.3 verifies that the specified Ho~bound is indeed satisfied. The
designed controller guarantees stability for k € [ko — 1~01—003,160 + L()]m] and hence
k€3 x107%, 1.9997]. This in turn implies that uncertainties Ak with |[Ak| < 0.9997
can be tolerated without the closed-loop system becoming unstable. Some closed-

loop properties are summarized in table 5.3.

5.5.2.2 Case 2: Measurement of z1(t) and Actuation on the First Mass

For this design case only the position of the first mass is available as measurement
and a control action on the first mass is allowed. The open-loop system matrices B)

and (7} are as follows.

B} = , ci=(1000).

S O = O

This design case has equivalent interpretations regarding the minimally achievable

Heo—norm of ||TL(Co)||ee. That is, there is no controller that will satisfy a specified
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Table 5.3: Two-mass spring Hs—design example: Closed-loop properties for design

case 1; Measurements of z}(t), 3(¢); Actuation on the first mass.

Nominal design plant: mo=1, kg =1
Specified y': 1.0005 (0.01 dB)
Achieved ||TL(Co)l|oo: 1.0003 (0.0060 dB)

Guaranteed stability region: 3 x 107 < k < 1.9997

Closed-loop system poles: A1 = —0.0001

Ay = —0.1670

Az = —1.3018

Ay = —3.3323

Ase = —0.7674 £ 8.41485

A7 = —0.8197 + 2.3065;
Controller poles: Aer = —1.4958

Aez = —3.3193

Aaza = —1.5802 +2.41915
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Figure 5.3: Two-mass spring Ho,—design example: Singular value plot of TL (Cy, s)
for the designed controller; Design case 1: Measurements of x1(#), z1(¢); Actuation

on the first mass.
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Hoo—bound ||TL(Co)llc < 1. However, this design case differs from the first in that
1t represents a problem with a co-located sensor/actuator pair. Furthermore, as the
position of the second mass is not available this variable has to be “reconstructed”
in the controller to guarantee closed-loop stability. The specified Ho,—bound ! for
the design was set to v = 1.05. The controller structure was chosen such that
controllability of the pair (A, B.) is explicitly imposed (see the controller matrices
below). The selected controller type is a dynamic proper full-order controller. The

designed controller has a realization with the following state—space matrices.

0 1 0 0 0
1 0
A = 0 0 0 . B.= ,
0 0 0 1 0
—0.04433820 5.66240636 0.44756456 —4.32708050 1

o = ( 0.40013604 —51.10117437 —3.95336090 27.45265681 ),

Do = ( —9.02463471 )

The closed-loop properties for this design are summarized in table 5.4. The singular
value plot of the closed-loop system (see Figure 5.4) validates that the specified Hoo-
bound 7' = 1.05 has been satisfied. The designed controller stabilizes the system and
guarantees stability for k € [ko — 155, ko + 7557z) and hence & € [0.0398, 1.9602].
This in turn implies that uncertainties Ak with |Ak| < 0.9602 can be tolerated

without the system becoming unstable.

5.5.2.3 Case 3: Measurements of x{(t), z(t) and Actuation on Both Masses

In the last design case for this example let us consider the problem where both
positions are available as measurements and we can actuate on both masses. The

open-loop system matrices B and C} corresponding to this problem are as follows.

I 0 00
. Ol= .
0010

B} =

o O = O
_-0 o O
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Table 5.4: Two-mass spring Ho,~design example: Closed-loop properties for design

case 2; Measurement of z1(t); Actuation on the first mass.

Nominal design plant: mo =1, ko =1
Specified +!: 1.05 (0.9758 dB)
Achieved || T1(Co)]|oo: 1.0415 (0.8132 dB)

Guaranteed stability region: 0.0398 < k < 1.9602
Closed-loop system poles: A1 = —0.0058
A, = —0.0244
Asz4 = —0.0025 £+ 0.00897
Ase = —0.8301 + 1.89715
Arg = —1.3158 £ 0.1923;

Controller poles: Aa = 0.0078
Az = 1.0635
A = —1.2998

Aea = —4.0986
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Figure 5.4: Two-mass spring He,—design example: Singular value plot of T (Co, s)
for the designed controller; Design case 2: Measurement of z{(¢); Actuation on the

first mass.
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This design case is interesting because the minimally achievable H,,-norm of the
transfer function T (Co, s) from w! (s) to z! (s) can be smaller than one. Obviously,
if we can apply a force to both masses and both mass positions are available to
the controller, then we can always compensate for any force in between these two
masses (given sufficiently large control forces). This implies that even additional
forces in between these two masses can be tolerated corresponding to the case of an
“active” spring. Thus the achievable H,,—norm for the transfer function 7'} (g, s) is
ITL(Co)lleo = 0 and we can actually guarantee stability for any Ak. The controller
type for this design case is a strictly proper fourth-order controller with structural
constraints as depicted by the the structure of the controller matrices A., B. and

C. below. The resulting controller realization is given by the following state-space

matrices.
0 1 0 0
4 - —447.13923701 —57.63138721 0 0
‘o 0 0 0 1 ’
0 0 -35.90942974 —127.57195209
00
B(‘ = 0 1 A
0 0
1 0
. 6170.60542737 10902.36023990 —1038.25779087 —9074.32543211
T —6181.52733530 —10913.54138359 1038.72400509 9073.20212098 |’
D. = ( 00 :
00

The designed controller stabilizes the system and guarantees stability for k € [k —
somssy Ko+ 5oess) and hence for k € [—10.2613, 12.2613] (see table 5.5 and Figure 5.5).
This implies that uncertainties Ak with |[Ak| < 11.2613 can be tolerated without loss

of stability. The lower limit in the bounding interval on k (k € [—10.2613, 12.2613])

on the other hand is negative and indicates that a negative spring constants k& within
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the given boundaries will not cause instability. A negative spring constant, however,
corresponds to an active element in between the two masses which can be interpreted
as an additional force in addition to the passive spring between the two masses.
This result confirms the above analysis on the minimally achievable H—norm of
|72 (Co)llsc. Note also that the first row in the controller matrix C, is almost iden-
tical to the negated second row in C,. This shows that both controls act in opposite
directions so as to compensate for possible forces between the two masses. Further-
more, the more negative the acceptable k, the larger a possible force between these
masses will be. Hence, for very small values of 4! this will generally require high-gain

controllers and large control efforts.

Table 5.5: Two-mass spring Ho,—design example: Closed-loop properties for design

case 3; Measurements of z{(t), z1(¢); Actuation on both masses.

Nominal design plant: moe=1, ko =1
Specified 4! 0.1 (=20 dB)
Achieved [|TL (Co)||oo: 0.0888 (—21.1103 dB)

Guaranteed stability region: —10.2613 < k < 12.2613
Closed-loop system poles: A1 = —0.1026

Ay = —2.8778

Az = —H2.8723

Ay = —127.8507

Ase = —0.0260 £ 0.12567

Az = —0.7238 £ 16.1974;
Controller poles: Aa = —0.2821

Aez = —9.2400

Az = —48.3913

Aea = —127.2898
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Figure 5.5: Two-mass spring Ho,—design example: Singular value plot of T (Cy, s)

for the designed controller; Design case 2: Measurements of x!(t), x}(t); Actuation

on both masses.
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5.5.8 FEzample 3: The Four-Disc Problem

The four-disc torsional system has been investigated thoroughly in the past decade
(see e.g. [64] and references within) The system consists of four discs that are mounted
on a vertical steel rod and can rotate around this rod. In the following description
these discs are numbered according to their position in the system, i.e., the lowest disk
is the first disc, the disc above that is disc number two and so forth. An actuation can
be applied to this plant via a DC-motor attached to the third disc while measurements
are available from sensors on the first disc. The inertia 3 of the uppermost disc (disc
4) is treated as uncertainty in this system. That is, it is assumed that 3 = 8, + A3
where the nominal value 3, for the inertia of the first disc. The reader is referred to
[64] for more details on the physical setup of this system. A corresponding state—space

realization of this system with Af as uncertainty can be given as follows.

01 0 0 0 0 0 0 0 ) 0
10 1 0 0 0 0 0 0 0
00 01 0 0 0 0 0 0
g1 0o=20 10 0 o0 sl go| 0]
00 0 0 0 1 0 0 0 0
00 1 020 1 0 0 |
00 0 0 0 0 0 I 0 0
0 0 0 0 A 0 —f8 0 1 \ 0

¢}=(0000 10 -10),

@:(100()0000)

' 01 000O0CO0OO0

where the 8 states x}(t), (: = 1,2,...,8) represent the angular positions 0;(¢) and an-
gular rates Q;(t), ¢ = 1,2,3,4 of the four discs. That is, z](t) = 6,(¢), z}(¢) = (1),
xy(t) = 0y(t), 2}(t) = W(t), zi(t) = 03(), xl(t) = Qa(t) and zl(t) = 04(1),
x3(t) = Q4(t). The uncertainty block A'(s) in this case is easily identified as
A'(s) = AfB. The control input distribution matrix Bj reveals the actuation on

the third disc and '} indicates that the angular position and angular rate of the first

disc are assumed to be measurable through sensors.
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This plant has been considered in the framework of mixed H;/H,,—control design
with the inclusion of natural damping into the open-loop system (see e.g. [7]). With
this modification the H.,—design problem can be solved via the DGKF-approach as
all the relevant system assumptions for this approach are satisfied. However, without
any natural damping it can be verified that the H,,—~design problem for the above
system cannot be solved by the DGKF-approach or the Stoorvogel solution to the
suboptimal H. ~design problem. Furthermore, without any natural damping this
system exhibits some very interesting characteristics.

Let us assume that A3 = 0 and examine the pure stabilization problem of the
nominal plant for some values of the inertia Ay. It can be shown that the two nominal
values By = 0.382 and fy = 2.618 represent two special plant conditions. At 3y =
0.382 and By = 2.618 the system exhibits pole-zero cancellations on the jw-axis. For
these inertia values the resulting undamped modes are not controllable through B
and hence are not stabilizable. This implies that a controller Cy can stabilize the

above system only in the following intervals for 3y:

0< By <0.382
0382 < By < 2.618
2.618 < fo.

However, no controller exists that can stabilize the system for Sg—intervals that con-
tain either 3y = 0.382 or By = 2.618.

Now let us return to the problem of robustly stabilizing the above plant for A3 # 0
and 3 = Bo+ApS. The nominal point 3 of the physical system is 3y = 1. Hence, if one
is to design a controller at this nominal point, the maximally tolerable uncertainty

Af can be computed to be

ABee = min[ (o — 0.382), (2.618 — o) ]
= min[0.6180, 1.618 ]
= 0.6130.

This implies that the minimally achievable Ho,—norm ||TL (Co)lleo is [|TL(Co)lloo =

1
0.6180

= 1.6181. However, for the controller synthesis one is not required to use the
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physical nominal point. In order to maximize the region of robust stability one can
select an alternate nominal point for the design as long as the resulting controller
stabilizes the physically nominal plant as well. This has been done for the first design
case in the next subsection. There a nominal value 3y = 1.5 has been selected and a
suboptimal H—design problem for the single-plant case is performed.

The second design case assumes two plant conditions, one at 8y = 1 and the
second one at 3y = 4. For these two conditions a single controller is designed that

stabilizes both systems and satisfies the specified H.,~bounds.

5.5.3.1 C(Case 1: Single-Plant Design

The nominal (design) point 4] = 1.5 for this design case is approximately half way in
between the theoretical limits 0.382 < 3 < 2.618 for which a controller can stabilize
the plant. Robust stability in the regions 0 < 8 < 0.382 and 2.618 < /3 is not
explicitly taken into account. It can be verified that with 3, = 1.5 the theoretically
smallest achievable Ho,—norm ||TL (Co)||o 18 [|TL(Co)]lee = 0.8945. For the following
design the specified ' has been set to 4! = 1.2 > 0.8945. The controller type is
a fixed-order (fourth-order) proper controller that is structurally constrained. The
selected controller structure realizes a PID-type control law. The only measurement
available to the dynamic (PI) part of the controller is the angular position of the first
disc. The differential portion is realized by the entry D, (1,2 in the direct feedthrough
term D. of the proper controller. This term represents a proportional control law for
the angular rate of the first disc and hence a differential controller for the position of

the first disc. The designed controller has the following state-space realization:

( 0 1 0 0
4 | 158962925007 —23.6235424835 0 0 |
0 0 0 1
0 0 —3.9218133071 —0.8615188726
o o
B. = 0 ;
0 0
1 0

C. = ( 31.5880796759 —2.3698196389 13.3336407399 3.3435177407 ),
D.= ( —0.3906473307 2.4316125330 )
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The controller stabilizes the nominal (design) system with 8} = 1.5 (see table 5.6).
The achieved H,—norm guarantees stability of the closed-loop system for any 3 =
Bs + ApB for 0.5811 < 3 < 2.4189 and hence also stabilizes the nominal point of the
physical system (3o = 1). The controller results in a closed-loop system that is very
close to being unstable (note that one of the closed-loop eigenvalues is —1.9580 x
1076+ 1.61807). However, no eigenvalue constraints have been included in this design
and hence the specified criterion - namely the H.,—constraint — is satisfied. The
singular value plot of T (Co,s) in Figure 5.6 confirms this fact. Unfortunately the
designed controller does not stabilize the plant for values 3 = 3} + Af other than
0.5811 < 3 < 2.4189. If one requires stability in one (or both) of the above intervals as
well, one has to formulate the H,-robust stability problem in terms of a multi-plant

design problem. This will be done in the next section.

Table 5.6: Four-disc H—design example: Closed-loop properties for design case 1:

Single—plant case, 4} = 1.5.

Nominal design point: B =15
Specified ~': 1.2 (1.5836 dB)
Achieved ||TL (Co)|loo: 1.0883 (0.7350 dB)

Guaranteed stability region: 0.5811 < 3 < 2.4189
Closed-loop system poles: Ar = —0.0065
Ay = —22.9303
Aza = —1.9580 x 107% £+ 1.6180;
Ase = —0.0347 £ 0.32667
Arg = —0.1387 £ 2.0247;
Ago = —0.2913 1 0.8208;
A2 = —0.3093 + 1.58535
Controller poles: Aqa = —0.6932
Aey = —22.9302
Acza = —0.4307 4+ 1.9329;
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Figure 5.6: Four—disc Ho,—design example: Singular value plot of T} (Co, s) for design
case 1: Single-plant case, 3} = 1.5.
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5.5.3.2  Case 2: Multi-Plant Design

Here the nominal points for the two (design) systems have been chosen to be By =1
and 37 = 4. By setting 8] = 1 the first plant condition represents the physically
nominal system. With this choice a single controller is sought that simultaneously
stabilizes both plant conditions and provides robust stability for some regions in
the interval 0.382 < 3 < 2.618 (around the physical nominal point 3} = 1) and
in the interval 2.618 < 3 (around the nominal point 52 = 4). Note that 3 here
stands for the inertia of the real plant, the values Ay and A2 are only selected design
parameters. The desired stability regions depend on the specified H,,~bounds ! and
4%. For this multi-plant example these values have been chosen to be V=72 =2
and do not violate the theoretical limits for the achievable Ho—norms which are
17 (Co)lloe = 1.6181 and || T2 (Co)|leo = 0.7236 respectively. The controller type and

stricture are the same as in design case 1 for this example. The designed controller

has the following state-space realization:

0 ] 0 0
A _ | —1:4140039143  —6.3059498695 0 0
‘< 0 0 0 ] ’
0 0 —5.442805186824 —0.6079752614
(0 0
10
Bc‘: )
00
0

o = ( 152.8606825147 183.2410250521 40.4698252837 1.2192732255 ),

D. = ( —42.1208298550 8.2783456342 ).

The closed-loop properties for both plant conditions show that the controller sta-
bilizes both plant conditions simultaneously and satisfies the specified H..~bounds
(see tables 5.7 and 5.8). From the achieved H,,-norms || T.L (Co)||« and T2 (Co)lloo
the achieved stability regions in terms of 8 can be computed. With this controller,
closed-loop stability is guaranteed for all 4 in the intervals 0.4981 < g < 1.5019,
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3.4384 < 3 < 4.5616. The singular value plots of both closed-loop plant conditions
are shown in Figures 5.7 and 5.8 respectively. However, the closed-loop sytem remains
unstable for any value of 8in 0 < 4 < 0.382. If stability in this region is required
in addition, one has to define a M, —design problem with three plant conditions to

explicitly account for this specification.
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Table 5.7: Four-disc Hy-design example: Closed-loop properties of the first plant

condition for design case 2: Multi-plant case, 8} = 1.

Nominal design point: By =1
Specified ~!: 2 (6.0206 dB)
Achieved [T (Co)llw: 1.9925 (5.9880 dB)

Guaranteed stability region: 0.4981 < 3 < 1.5019
Closed-loop system poles: A = —0.3870
Ay = —5.4984
Azq = —0.0003 £ 1.61795
Ase = —0.0685 + 0.18815
A7g = —0.1032 £ 0.6712;
Ag10 = —0.1575 + 1.46935
A1,z = —0.1847 £ 2.40675
Controller poles: Aa = —0.8020
Aszy = —5.5040
Aeza = —0.3040 £ 2.31315

Table 5.8: Four-disc H~design example: Closed-loop properties of the second plant

condition for design case 2: Multi-plant case, 32 = 4.

Nominal design point: BE =4
Specified % 2 (6.0206 dB)
Achieved ||T2(Co)|loo: 1.7805 (5.0108 dB)

Guaranteed stability region: 3.4384 < 3 < 4.5616
Closed-loop system poles: Ar = —0.2394
Ay = —5.4984
Azq = —0.0001 + 1.61815
s = —0.0619 £ 0.2784;
A7 = —0.0903 £ 2.4435;
Ag 10 = —0.1568 + 2.1942;
A1,z = —0.2791 £ 0.75365
Controller poles: Aa = —0.8020
Az = —5.5040
Aia = —0.3040 + 2.31315
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Figure 5.7: Four-disc Ho.~design example: Singular value plot of T1(Co, s) for design

case 2: Multi-plant case, 8] =
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Figure 5.8: Four-disc Ho.~design example: Singular value plot of T2 (Cy, s) for design

case 2: Multi-plant case, 32 = 4.



Chapter 6
THE MIXED H,/H.-PROBLEM

6.1 The General Multi-Plant Case

The mixed H,/H,.~design problem stated in definition 3.2.1 of chapter 3 is a con-
strained optimization problem. With n, plant conditions %5 (Co) and L ,(Co)
and their respective transfer functions 735(Co, s) and T: (Co, s) defined in chapter 3,
a set of n, prespecified weighting parameters o' and the set of fixed robust stabil-
ity bounds ', an internally stabilizing controller (7 is to be found that solves the

following optimization problem.

’”’P ) )
H(l)ill t,ii;goo JZ(CO,th2):l%iOH :,}j;goo ;a1J;((70,tf'H2), (6.1)
where
J(Cotyry) = El2 (L0,)74(tsm,)] (6.2)
lim J{Cortp) = ITHCOI (6.3
fHy —>®
subject to n, H.,-robust stability constraints
IT%(Collloo < 7'y i=1,2,..n,. (6.4)

The pure multi-plant H,,—design problem has been discussed thoroughly in chapter
5. The trace-type penalty cost function defined in chapter 4 and the penalty/barrier
function approach for the pure H~design problem immediately lead to the following
formulation of the mixed H,/Heo—design problem. Namely, the n, Hs—constraints
are formulated in terms of the tools developed in the chapter 5. Following this
approach the n, H.,-constraints are transformed into a set of matrix inequalities
which in turn are represented in terms of scalar cost functions. Ultimately the robust
stability problem for all n, plant conditions is expressed in terms of the overall cost

function J(Co, ¥, G, T;) defined in chapter 5. This cost function is zero in the limit
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as Ty — oo, if and only if all the matrix constraints and hence all H, -constraints
imposed on the n, closed-loop systems E;,C,(CO) are satisfied. For the following
development it is assumed that the sets ., G and T are the same as defined in
chapter 5.

As with the pure H—problem, there are various possible ways to pose this opti-
mization problem in a gradient-based framework. Numerically the problem at hand
can be formulated as a constrained optimization problem. Utilizing the cost func-
tion Joo (Co, X', G, 7;), one can define a constrained minimization problem to solve the
mixed H;/H..—problem as follows.

min  lim  Jy(Co,tsn,), (6.5)

Co, X tyr,—o0

subject to the single constraint

lim J.(Co, X,G,Tf) =0, (6.6)

f—;OO

where, alternatively, the single constraint (6.6) can be expressed as a set of 3n,
constraints such as in (5.62)-(5.64).

If the closed-loop systems are allowed to become unstable during intermediate
phases of the optimization, then the corresponding Hy—norms ||T3(Co)||? are not de-
fined and one has to use the cost function J3(Co,¢52,) for a finite t;3,, and solve the
above optimization problem for a monotonically increasing t¢#,. Once the controller
is stabilizing all the plant conditions, then in the limit, as ¢y, — oo, Ji(Co,ts2,)
recovers the exact performance measure that we want to minimize (see (3.22)). This
scheme has been developed in [64] and the formulation for the mixed H,/Hoo—design
problem as worked out in this research fits nicely into the established H,—design
framework.

On the other hand, if the controller is restricted to stabilize all plant conditions
during the whole course of the optimization, then Lyapunov equation solutions can
be utilized to compute the exact function values ||T3(Co)||? and the corresponding
gradients for all plant conditions (see (3.24)-(3.27)). However, such an optimization
scheme must assure that the controller remains stabilizing during every phase of the
optimization.

Following the spirit in chapter 5, the multi-plant mixed H,/H..~design problem is

formulated via a penalty /barrier function represented by J(Co, X', G, T;).
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Definition 6.1.1
Under the assumptions in definition 3.2.1 an unconstrained mized Hz/Ho —cost func-
tion Jyyoo(Co, X, G, Ty, t i1, ) is defined as follows.

D216 Cor X, G Ty t11,) = e302(Coy ty) + ool Co, X, G, T) (6.7)

with J(Co,ts3,) given in definition 3.2.1, Joo(Co, X, G, T;) as in chapter 5 and a

scaling factor ¢; > 0. In the limit, as Ty — oo and t;y, — oo, the optimization

problem
.;‘/w((,*g,i’*,g)zgliu Im  Jyyeo(Co, X, G, Ty g3, (6.8)
4017 {—oe
tfH2—>OO

solves the mired Hy/Ho,-design strategy in definition 3.2.1 provided there ezists a
controller that satisfies all the H,, —bounds.

If a controller C§ and a corresponding set X'* have been found such that all the 7y
Ho—constraints are satisfied and all the relevant ARI matrix constraints in definition
5.1.1 are satisfied such that ARI ,x(Cy, (X')*,7') < 0, R > 0 and (X?)* > 0 for
t = 1,2,..n,, then

lim Jo(Cq, X*,G,T;) = 0.

Ty—oo
Note in particular, that a controller ¢ that satisfies this condition automatically
stabilizes all plant conditions as discussed in chapter 3. This implies that stability
of all closed-loop matrices A’; is a natural result of this process and needs not be
enforced as an additional constraint in this formulation. This is important since
establishing stability constraints either requires additional optimization variables or,
if defined in terms of direct constraints on their eigenvalues, these constraints may not
always be differentiable. Hence, for a controller C¢ that satisfies all H,—constraints
and hence stabilizes all the plant conditions, the n, Hy-norms IT5(CoH||? are well
defined and we have, along with a corresponding set X'* and (6.6), that
lim J2o(Cg X, G, Tr tp,) < o0,

Tg—o
tf-Hz — 00

Moreover, in this case,

np . ‘
71{1_1_130 J2/00( Uos X, G, Ty tp,) = EQIHT;(CS)”,ZZ» (6.9)
tfH2—>oo =1
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which is the H,-performance cost that needs to be minimized. On the other hand,
if one or more of the H,,—constraint are not satisfied or the controller Cy is not in-
ternally stabilizing one or more of the closed-loop plants, then either J2(Cyytyn,) or
Joo(Cg, X*, G, T;) or both will be unbounded in the limit as 7t — oo and tyy, — oo
and hence the overall cost function will be unbounded in this case as well. Thus in
this limit, Jy/60(C§, X*, G, Ty, ty34,) is finite if and only if (5 stabilizes all plant condi-
tions and the set A" is such that all n, ARI-constraints are satisfied. In the following
the expressions J3,0,(Cg, X", G, T;,t 53, — 00) and J2(CF,tyy, — 00) are abbreviated
by Jy/e0(C5, X", G, Ts,00) and Jo(CF, 00) respectively. This is a nice property of the
defined cost function for the mixed H,/H,,~design. It also suggests an iterative pro-
cedure similar to the one proposed in the last chapter to numerically solve the design
problem. In [64] explicit gradient expressions for finite-time cost functions such as
Jo(C5,tm,) have been derived and thus the problem can be solved for an ncreasing
sequence of ¢y, and increasing elements in 7; as a sequence of unconstrained min-
imization problems. Alternatively, in this research a barrier function approach has
been applied to the mixed H,/H,,~design problem. The outline of such an algorithm

is as follows,

1. Initialization:

Specify a set G of desired H.,—bounds and a set of weighting factors o, ¢ =
1,2,...,n,. Select an initial controller guess Cy of the desired structure and

order and an initial guess for the set X' as described in the last chapter.

2. Phase one: Computation of a H.,—controller:

Using the machinery developed in chapter 5, find a controller C9 that satisfies
all n, H,,—constraints and stabilizes all plant conditions as well as a set X'°

such that all ARI-related matrix constraints in definition 5.1.1 and
Tlim JOO(CS, ‘X’O,Q,’Tf) =0
F—00

are satisfied. If no such controller can be found, the algorithm terminates here.
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3. Phase two: Computation of the mixed H,/H..-controller:

Set ¢34, = oo and select an initial (7;)! and the scaling factor ¢3)! such that
fHo f g

'Ilp ) ) ) .
(e2)'1x(C,00) = (e2)' Y THCDIE = 1 (6.10)
=1
Joo(C, X%, G, (T1)) < 1. (6.11)
With these settings and using C2 and A° as initial guesses, set & = 1 and

perform the following steps at the k* iteration:

e Solve the unconstrained minimization problem

min Ja/0(Co, X, G, (T7)%, 00) (6.12)
20,0
to get C§ and ('),
o If
e A _ ' np ; i ; ‘
|22 TR (CoNIE ~ 2o ITHCNIE] < e (6.13)
i=1 1=1

for some prespecified €, then stop. Otherwise increase the elements in

(77)* to form (T;)**! and increase (c3)* to (c3)¥*! such that

Np

()3 THCHI2 = 1 (6.14)
i=1
and
Joo(C5 X*, G, (T ) <« 1 (6.15)

and repeat the minimization (6.12).

This bootstrap method of first computing a controller that satisfies all the M. —
constraints before addressing the mixed performance/robustness strategy has many
advantages. In general the mixed H,/H.—problem has a solution if and only if
the pure Ho—problem is solvable, that is, if there is a controller that satisfies all
ny specified He~constraints. Without the existence of such a controller the mixed
problem has no solution. Hence, if in phase one of the above algorithm no controller
can be found that satisfies all the H—constraints, then there is no need to initiate

phase two and the algorithm terminates at this point.
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However, because the matrix inequalities representing the M., -constraints and hence
the overall H,,—design algorithm are in general not convex, such a negative outcome
does not necessarily imply that there is no controller at all that satisfies the desired
Hoo—constraints. Hence, as with every optimization problem, the initial guesses and
physical insights into the problem are of importance. However, if a controller has
been found that does satisfy the Ho—constraints, then the non—uniqueness of this
whole class of controllers can be exploited to additionally minimize the performance
cost as it is done in phase two of the algorithm. The initial guess for the over-
all algorithm is not required to be stabilizing all the plant conditions; in general it
can be arbitrary. The controller C? derived in phase one of the algorithm not only
satisfies all the Ho,-bounds but will also stabilize all n, plant conditions. In the
second phase of the algorithm the above updates for (7;)* and (c;)* guarantee that
all H.,-related constraints, i.e. ARIL p(Co, X)) < 0, Di{ooDilm —(¥)* < 0
and X' > 0 for 7 = 1,2,...,n, remain in effect throughout the whole optimization.
Hence Joo(CE, X* G, (T;)*t") acts as a barrier function in the (k 4+ 1)* iteration,
rejecting controllers that violate any of the np Heo—constraints. This also implies
that in this phase the search will be performed only over the set of stabilizing con-
trollers. Hence we can use J,(Co,tsy,) with the limit ty3, — oo. In this case
J2(Co,00) = 121 || T5(Co)||? represents the performance cost in the second phase
of the optimization. In this framework, the Hy—performance cost and the respective
gradients can be computed via Lyapunov solutions and not as a finite—time cost func-
tion ([64]).

The computation of this cost in terms of the grammians has been described in
chapter 3 and the corresponding gradients for ||T3((%)||? have been derived in ap-
pendix B. The overall gradient expressions of J2/00(Co, X, G, T;,00) with respect to
X' are identical to the respective partial gradients of J( 70, X,G,T;) as the Hy—
performance cost is not a function of X'. The gradients of the overall cost function

with respect to Cy are as follows.

0Jy/os(Cor X, G, T, oo
Yol Cor 106 T700) _§™ gy g (0, T piyT
d(lo =1 l ' |
N (?Joo( 70,.—1',Q,Tf)
0C, ’

(6.16)
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where L} and L} solve

AilLi +L1(A21)T+le,z(3iz,z)T =0 (6-17)
LyAy + (AT Ly + (O )T Cly = 0 (6.18)

respectively. With J(Co, X, G, T;) defined in (5.65), no further modifications are
needed to form a well-conditioned optimization problem. That is, the additional
performance cost does not introduce any unforeseen difficulty in terms of new unde-
sirable local minima.

Taking into account that the algorithm will terminate at some (7;)* with finite
elements, it is obvious that Joo(CE X5, G, (T)5+1) will never be exactly zero and
hence the performance cost ()" 12, || T(C¥)||2 will always be larger than the
optimally achievable. The optimally achievable performance cost will be achieved
only in the limit as (7;)* — oo. However, since in the second phase of the algorithm
all the H,,—constraints will remain satisfied, there will be n, small but positive ¢ such

that ARIE op(Co, X' 7' ) + el <0, DT_Di,  — (v +el <0and —X' + ¢l < 0.

clooo /el 00
Hence there will be large but finite t}l, t}z and 1‘}3 for each plant condition such that
Joo(CE X5 G (T1)5+1) can be made arbitrarily small and hence we can approach
the optimally achievable performance as close as desired using the above finite-time
algorithm. This fact is reflected in the termination criterion for the second phase,
namely | S, o [Z3(CEIB — T2, o ITHCHIE | < e.

As discussed before, there are principally two different design problems. For the
simultaneous mixed H3/H.,~design problem one seeks to find a controller that is
H,-optimal, i.e. a controller that minimizes the above H,-cost and additionally sat-
isfies the considered Ho,—bounds. Note that this problem may not be solvable even
if a controller exists that satisfies all the specified H.,—constraints. If such a con-
troller exists, however, it can be expected that the achieved H.,norms are not on
the specified boundary. That is, there is no competition between the performance and
the robust stability objectives. The general mixed H,/H—design problem addresses
cases where the two objectives compete and a controller that satisfies the desired Hoo—
bounds will not be H,-optimal. In this case the achieved H.,—norms will generally
be at the specified boundary. The class of simultaneous mixed H,/Hoo— controllers is
generally a subclass of the mixed H;/H,,—controllers. The presented formulation is

applicable to both problems. However, due to the non—convexity of the overall prob-
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lem it cannot be guaranteed that the above algorithm will converge to a simultaneous
mixed H,/H..—controller - if such a controller exists for the problem at hand.

If a controller of the desired structure and order can be found that stabilizes all
plant conditions simultaneously, then an alternative algorithm for the mixed HofHoo
design problem can be formulated in terms of the “Top Down” approach introduced
in definition 5.4.1. Furthermore, the extension of H,,~design algorithm to the optimal
Hoo~design problem allows the definition of an algorithm that attempts to minimize
the above H,-performance cost subject to a minimally achievable H.,—norm for each

plant condition.

6.1.1 Mired H,/H..—Design Examples
6.1.1.1 A Second-Order Single—Plant Example

Consider the following single-plant example where the closed-loop system norms
1 T3 (Co)llz and |ITL(Co)|leo can be computed explicitly. According to the system

representation in (3.1) the system has the following state-space realization.

. 1 _ -1 1 1 0 1 0 1 0 ul
S ) P [ e (P D

A1) = (; g)wlm
A = (-1 1)2'(
B0 = (0 1))

This plant is detectable through y'(¢) (not observable). Furthermore, it can be
verified that the problem is singular and certain subsystems have invariant zeros
on the jw-axis (refer to [24] and [113]). The open-loop system is unstable and
the specified controller type for this example is a static output—feedback controller
ul(t) = Coy'(t) = Dey'(t). 1t is easily verified that the controller will stabilize the

plant for any D. < —1. After some algebra we arrive at the following expressions for
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the relevant norms as a function of the output-feedback gain D..

1T (D)l = D] (6.19)
T30l = % (6.20)

The behavior of these expressions as a function of D, is shown in Figures 6.1 and
6.2 respectively. The corresponding mixed H;/Hoo—performance/robustness tradeoff
characteristic for this design example is shown in Figure 6.3. Every ‘o’ in Figure 6.3
corresponds to a numerical point design while the curve connecting these points is
the theoretically achievable H,/H,,~performance/robustness characteristic.

The H;-optimal controller gain D? is Dr = 2.2961 resulting in the closed-loop
Hy—norm ||T3(D7)]]2 = 1.4486 and a corresponding Hoo-norm 1Too( D)l = 0.4355.
Thus for any specified Ho,~bound 4! satisfying ! > 0.4355 the ‘H,—-optimal con-
troller D satisfies the specified bound [|T(Co)||c < 7' additionally. Hence for
' > 0.4355 the controller D? = 2.2961 represents a solution to the simultaneous
mixed H,/Hoo~design problem discussed in chapter 2. For 4! < 0.4355 a trade-
off between the H, performance and robust Ho—stability has to be accepted. De-
pending on the design specifications one would then pick a point from the mixed
Hy/H—performance/robustness tradeoff characteristic in Figure 6.3 that satisfies

these specifications.

6.1.1.2 Two-Plant F15-Aircraft Model

The plant in this example represents a fourth-order model for the longitudinal dynam-
ics of an Fl5-aircraft. The first plant condition represents a subsonic flight condition
while the second operating condition is supersonic. The system uncertainties are in
the drag coefficient (C'p) and the pitching moment coefficient (Cm.). The control in-
put is the elevator control and the four states of the model correspond to the aircraft
velocity, the angle of attack, the pitch rate and the pitch attitude respectively. The
reader is referred to [96] for more information on the physical parameters and the
plant model itself.

According to the system representation (3.1), the system matrices describing the

subsonic and supersonic operating conditions are as follows.
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First plant condition (subsonic):

0.0082 —25.7084 0 —32.1709 0.0082  0.0462
41 | 00002 —1.2763  1.0000 0| g _| 00002 0.0023
0.0007  1.0218 —2.4052 o |’ ~0.0007 —0.0018
0 0 1.0000 0 0 0
[ —0.5585 0 0 —6.8094
Bl = 0 —0.2793 o | 0197 |
0 0.9991 20.9938 : —14.0611
0 0 0 0
([ 0.0707 0 0 0 0
Cl = 0 0 03162 0|, Diz=1| o0 |,
00 0 0 20 )
0.0147 000
Cl = 0 00147 0 0 |, Cl=1.
0 —0.1688 0 0

Second plant condition (supersonic):

~0.0117 —95.9107 0 —32.1129 0.0117 0.0661
Az | 00001 —1.8794  1.0000 0 52— 0.0001 0.0013
- 0.0006 —3.6163 —3.4448 0] ' | —0.0006 0.0025
0 0  1.0000 0 0 0
—0.7985 0 0\ —925.4041
A 0 —0.3993 0 . —0.2204
B2 = , Bl= :
0  2.0457 78.4635 ‘ —53.4246
0 0 0 0

Y2 _ 1 2 1 Y2 _ il Y2 __
(’1_(’1’ [)IB_DI.‘}’ ("2-(”2’ (’:3_['
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All the remaining system matrices are assumed to be zero. These matrices follow
from the uncertainty description and the specified H,criterion defined on a weighted
combination of velocity, pitch attitude and elevator control. The controller is a first—
order, structurally unconstrained proper controller. By applying the presented H.-
design method and the scheme in [64] to compute Hy-optimal controllers to both
plant conditions individually (note that this involves two single-plant H,-problems
and two single-plant H.,~problems), some preliminary information has been derived
for this type of controller. These results and some open—loop information are given

in table 6.1 below.

Table 6.1: F15 multi-plant mixed H,/H,-design example: Preliminary analysis of
the plants.

Plant 1 | Plant 2

Open-Loop: Stable | Stable
Open-Loop ||T4(Co = 0)||, | 0.1068 | 0.0312
Open-Loop ||T%(Co = 0)]|0 | 23348.3 | 8013.3
Min. achievable || T3(Co)|l, | 0.032 | 0.0022
Min. achievable ||T% (Co)lloo | 0.0563 | 0.0964

The design results for the two-plant mixed Hy/H—~design are shown in Figure 6.4
where the first plant condition is identified by the design points ‘*’ (lower curve)
and the second plant by ‘o’ (upper curve). The weighting factors o were chosen to
be o' = 1 and o = 1. Hence both H;-norms are weighted equally. This choice
is justified as both plant conditions have roughly the same value for the minimally
achievable Hy—norm. The same H,,~bounds 4! and 42 were applied to both plant
conditions for each point design, i.e., ' = 42, Hence this is only a two-dimensional
example out of a generally four-dimensional surface. In a mixed design for multiple
plants, v* will provide an actual constraint for only some of the n, operating conditions
leaving the other plants unconstrained in terms of the robustness constraints. In this
example the resulting || T, (Co)||e was always below the specified v! while T2 ()0
stays on the specified robustness boundary for all design points. This suggests that

the supersonic flight condition is the more critical operating mode for the robust



128

0.3 T T T T T T T

0.25

o2k i\ SO L e AU SOOI -

0.15

2(Co) Il

I

0.1_A I . .............. Cee e e e e e .............

005k K N i

| 1 1 i !
0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
nTi(C o) I,
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stability problem. In general both curves exhibit the typical design tradeoffs involved

in the mixed H,/H,,~design.

Judging from Figure 6.4 a controller providing the the best compromise between
robustness and performance (taking into account both plant conditions) is achieved

with the following first-order controller:

—8.55194499 ) :

I

Ac
B.
C. = ( 0.07340103 ),
D,

(
(53.16826371 —5.65806706 —19.24660504 —5.53475605 ) ,
(
(

—0.83757176 15.44902573 1.17896427 8.66218328).

The closed-loop properties for both plant conditions with this particular controller are
summarized in tables 6.2 and 6.3. The singular value plots for both design conditions
are shown in Figures 6.5 and 6.6 respectively. Note that in this example the transfer
functions T (Co, s) generally have three singular values (as a function of jw). In
Figures 6.5 and 6.6 only the two most significant singular values are shown, the third

singular value function is insignificant in comparison to the other two.

Table 6.2: F15 multi-plant mixed Hy/Hoo—design example: Closed-loop properties

for the first plant condition.

Achieved ||T;}(Co)||2: 0.0579
Achieved ||T'L(Co)l|oo: 0.0805 (—21.8758 dB)
Closed-loop system poles: A\ = —0.7958

Ay = —4.2007

Az = —7.9336

Ay = —6.2490 + 14.302332;
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Figure 6.5: F15 multi-plant mixed H,/H,,~design example: Singular value plot of
T (Co,s).
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Figure 6.6: F15 multi-plant mixed H,/H,~design example: Singular value plot of
TOZO( 707 S).
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Table 6.3: F15 multi-plant mixed H,/H~design example: Closed-loop properties

for the second plant condition.

Achieved ||TZ(Co)||2: 0.0771
Achieved [|T2(Co)||oo: 0.115 (—18.7860 dB)

Closed-loop system poles: | A} = —0.4658
Aoz = —T7.7470 £+ 5.9286;
Ags = —21.5206 + 18.3541;

3

6.2 Mixed Hy/H.,—Control: The Single-Plant Full State-Feedback Case

The most general H,, and mixed H,/Hoo—design problems are in general not convex,
not even in the single plant case. However, for a very special class of single—plant
problems an upper bound for the H;—cost in conjunction with a particular controller
parametrization can be formulated as a convex optimization problem. When convex-
ity of the cost function holds (see chapter 4), this problem can then be solved via an
unconstrained scalar, differentiable and convex minimization problem. Since only the
single-plant case is considered here, the superscript (%) is omitted in the following
discussion. For this problem the system under consideration is assumed to have a

state-space realization of the following form.

z(t) = Az(t) + Buw(t) + Bsu(t)
. Zz(t) = (71.13(t) : + D]gU(t) .
2 o00pSF () = Coott) + Dot (6.21)

y(t) = z(1).
The system X, ., sr is to satisfy the following assumptions (see [58]):
1. Dy3 has full column rank.
2. The matrix pair
(1 = Daa(D33D23) 7' D)Cy , — A+ By(DEDas) ™' DL, Cy)

1s observable.
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The need for these assumptions will be discussed later. The dimensions of all the
signals are: x(t) € R, w(t) € R™, z(t) € R"=, 260(t) € R™ > u(t) € R*. The

controller is a static full-state feedback controller given by
u(t) = Coy(t) = Cox(t). (6.22)

First and most importantly, there is no distinction between two disturbance signal
vectors wy(t) and we(t) as was done in the general case. In this formulation w(t)
plays a dual role as a H,~disturbance and a H,,—disturbance. In practical terms
this implies that the disturbances w,(t) and Weo () are assumed to affect the system
through the same input distribution matrix B;. The uncertainties in this problem
are still modeled by a stable, norm bounded A(s)-block with a feedback connection
w(s) = A(8)20(s) and the Ho,-bound [|A(s)][e < ~. Note that in general a direct
feedthrough term from w(t) to z,,() can be incorporated as well. However, with
preliminary transformations described in [113], this case can always be reduced to a
state-space description of the form in (6.21).

With a static state—feedback controller Co, the closed-loop system /ool SF 18

given by
.’icl(t) = (A + Bg(?o);vcl(t) + Bclw(t) = Adl',,[(t) + Blw(t)
Yojooet sk 1y z(t) = (Cr+ DisCo)za(t) = Cupzal(t)
zoo(t) = ((72 + DZSCO)wcl(t) = Ccl,ool'cl(t)-
(6.23)

For this type of systems, the mixed H,/Hoo—design problem is essentially the same
as the previously considered problem, only that the H,—cost is now defined for the
closed-loop transfer function T(s) from w(s) to z(s) and the corresponding H,-
constraint on the closed-loop transfer function T,,(s) from w(s) t0 zo0(s). With these
definitions the problem statement is similar to that stated in definition 3.2.1 for the
single-plant case with n, = 1, and is omitted here. Assuming that a state—feedback

gain Cp stabilizes the closed-loop system then the H,—cost is
ITo(Co)ll; = Trace{ Cy2L.CT, } (6.24)

where L, solves
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The Ho—constraint on Th(s) such that ||Too(Co)llee < 7 for a specified v can be
represented by the ARI

ARIcsr(Co, X,7) < 0 (6.26)
ARIcsp(Co, X,7) = XAL+ AuX +472°XCY,Cu2X + B4BY  (6.27)

subject to X > 0. By subtracting (6.25) from (6.27) it immediately follows that
X > Lcif ARIc sp(Co, X,7) < 0 is satisfied and hence the cost Tracef (761_2XCCT1‘2
is an upper bound for the Hy—cost ||T2(Co)||2 if (6.26) is satisfied. This fact was
first reported by Bernstein et. al. and has been investigated thoroughly in [6], (7],
[47]. However, there is no reason to consider an upper bound to the Hy—cost if no
additional advantage can be derived.

Now consider a controller factorization of the form Cy, = W X~! where W is a real

matrix W € R">"+_ For this factorization the following abbreviation is introduced.
ARlcsp(Co= WX, X, v) = ARIc sr(W, X, 7).

With such a factorization the following results have been derived in [55] and [56].

Lemma 6.2.1 ([55], [6])
Consider the closed-loop system Byo, qsF with a fited Hoo-bound v and let Co =
WX with X = XT >0 and W € R™*" then the following holds:

1. For constant y the matrizx function ARIcsp(W, X,v): (W, X) — Rrexns

ARIcsp(W, X,v) = XAL+ AuX +772XCY,0u2X + BuBT (6.28)
= X[A+BWX N +[A+BWX X (6.29)
 HTX[Co+ DsWXTT(Cy + DosW XY X + B BT
= XAT+ AX + BsW + WTBT 4+ B, BT

+172CoX + DyaW]T[CoX + Dy W] (6.30)

is jointly convez in X and W. Furthermore, there exists a static state—feedback
Co = WX such that 1Too(Colloo < 7 if and only if there are X = XT > 0 and
W such that ARIc sp(W, X,v) < 0.
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2. The scalar quantity
Jrsp(W, X) = Trace{[Ch + DisW X 1X[Cy + DisW X"} (6.31)

is jountly convex in X and W. Moreover, if X = XT > 0 and W ezist such
that AR]C'SF(W, X,’)’) <0, then

Jasp(W, X) 2 || Ty(Co = WX = I T(W, X)|3- (6.32)

Two important remarks can be made at this point. First, no means are available
to determine the gap between the upper bound J2,s7(W, X) and the actual H;-cost
IT2(Co)||3 and hence the upper bound can be very conservative. Secondly, although
the above lemma gives an if-and-only—if condition between the existence of a con-
troller Co = WX~! that satisfies the specified Ho,—constraint, not all possible con-
trollers that satisfy the H,,—constraint are included in the class of possible solutions

X and W that satisfy the H.,—constraint.

To illustrate this fact, assume that the controller C3 = W*(X~1)* satisfies the
Hoo—constraint.  Then Cf = [/JW*][[];(X'])*] satisfies the H,,—constraint as well
for any scalar 3 # 0. However, there will always be a positive A such that con-
dition 4 in theorem 2.2.1 is violated and hence ;?(X“)* and [BW*] do not satisfy
ARl sp(W, X,v) any more. Hence, despite the necessary and sufficient condition
for the existence of a Hy,—suboptimal controller, not all possible controller charac-
terizations in terms of X and W are included in lemma 6.2.1. Thus, if additional
performance measures are to be achieved based on these individual controller compo-
nents, the above H.,—bound characterization is conservative. Note that this scheme
is applicable only to the single-plant problem as the controller parametrization di-
rectly depends on the solution X of ARl sp(W, X, 7) < 0. Despite its conservatism,
the formulation of an upper bound mixed H;/H.,-problem in terms of (6.32) and
(6.29) has the advantage that it results in a convex optimization problem to which the
penalty cost function approach is applicable. Following the framework established so

far, this problem can now be formulated as follows.



Definition 6.2.1
For the open-loop system X 2/ooop,sF i (6.21) and a prespecified Hoo-bound ~, find
two matrices W* and X* = (X*)T > 0 and a corresponding static state-feedback

controller Cy = W*(X~1)" that solves the minimization problem

s (W5 XT) = min Ja s (W, X) (6.33)
subject to
tlill] J‘X’wSF(W*’X*,’}/,tflsth) = 0’ (634)
t};—boo
where
JoosB (W, X, v, tp1,t3) = Trace{ eAflesrWXmin 4 o=Xtgs . (6.35)

Some interesting results have been derived for this type of problem. Most importantly,
in [58] it has been shown that for the general mixed H,/Hso~problem a dynamic state—
feedback controller Cy will not outperform a static state—feedback controller. That
means that we can restrict our attention to the class of static full-state feedback
controllers. Note, however, that this is not necessarily true for the simultaneous
mixed Hy/H.-problem. H,-optimal controllers that additionally satisfy a specified
Hoo—constraint on Ti(s) may in general be dynamic for this problem ([92]). In this
work the attention is restricted to the static case and hence to the general mixed
H;/Heo—problem. Extensions to the general dynamic case are easily incorporated
and will form a convex optimization problem as well.

The design problem can be solved numerically in the same way as the multi-
plant mixed H;/Ho,—problem. Note in particular, that for any given s and t;3,
the resulting minimization problems are convex as J, sp(W, X), ARIcsp(W, X, 7)
and —X are jointly convex in W and X and hence, with the results in chapter
2, Joosr(W, X,v,t51,t53) is jointly convex in W and X as well. As the sum of
convex functions is convex, overall convexity follows. Thus, using the penalty function
algorithm, the upper bound mixed H,/H,,~problem can be solved via a series of
unconstrained convex minimization problems. Note also that in this case the closed-
loop system may be unstable during intermediate phases of the algorithm as the
Hz—cost is not computed in terms of a Lyapunov solution. As before, once W* and
X* = (X")T > 0 have been found such that ARI¢ sp(W, X, ) < 0, then closed-loop
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stability automatically follows. The convexity property holds for any factorization

5. Furthermore, the assumptions

of X imposing X = X7 as discussed in chapter
imposed on the open-loop system assure that the solutions W and X are finite and
simultaneously avoid local minima that do not satisfy the H,,—bounds. In general
these constraints can be removed by adding an auxiliary cost to ensure bounded

solutions of W and X (see chapter 5).

6.2.1 Full State-Feedback Mized Hy/Ho ~Design Example

The example plant is the 4 -order system used in [101]. It represents the scaled
subsystem of the lateral dynamics of a B-767 aircraft with uncertain entries in the

open-loop A-matrix. The state-space matrices for this plant are as follows.

—0.0168  0.1121  0.0003 —0.5608

_ | —0.0164 —0.7771  0.9945  0.0015
| —0.0417 —3.6595 —0.9544 0|’
0 0 1 0
1 —0.0243
0 —0.0634
B]‘- y B3: [
0 —3.6942
1 0

Ci=(0010), D=1,

@:(wloumo),mpwm,@:L

All other matrices are assumed to be zero. The open—loop system is stable, the rele-
vant open—loop norms are [|7oo(Co)||oo = 7.4826 and ||T2(Co)|l2 = 0.9260 respectively,
the open-loop subsystem T (Co, s) has zeros in the right-half plane, the minimally
achievable ||To(Co)lo is 0.007 and the minimally achievable Hy-norm ||T3(Co)|l2
is 0.0078 when the H,, and H,-problems are solved independently for the state-
feedback case.

The mixed H;/H—performance/robustness characteristic for this state—feedback

case has the same interpretations and properties as that in the general case output—



137

feedback case. This tradeoff is shown in figure 6.7. A good tradeoff between the
Hy-performance and stability robustness can be achieved with the following state-

feedback gain matrix. The matrices W and X from which D, is computed are

W = (—0.73383998 —0.28674417 —0.22309747 0.67626086)

13.77087597  0.60885959  0.26514956  2.21194320
0.60885959  0.24309849  0.18079149 —0.52517534
0.26514956  0.18079149  0.15950869 —0.52847260
2.21194320 —0.52517534 —0.52847260  2.61509640

From these matrices W and X the controller gain D, then follows from D, = WX 1.
Do = ( —0.04438848 —0.83242054 0.13897734 0.15705908 ). (6.36)

The closed-loop properties for this particular controller are sumimarized in table 6.4
and the corresponding singular value plot of the closed-loop system is shown in Figure

6.8.

Table 6.4: B-767 mixed H,/H.,~design example, full state-feedback: Closed-loop

properties.

Achieved || T2(Co)||.: 0.2335
Achieved || T (Co)||oo: 0.0921 (—20.7103 dB)
Closed-loop system poles: A; = —0.4653

Ay = —7.5807

Az 4 = —0.6025 + 0.7529;




138

T T T T T T T
O. B Py - - - e —
0.3 ,_
=<“ [0 24 Y oo N S SR —
3
L
o
;-_— O 2 - e AR e e e
O.15 -
O o e e e T —
]
0 05 1 1 " i 1 1 i 1 1
(o) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

HT_(Cyo) i

Figure 6.7: B-767 mixed H,/H,,~design example, full state—feedback: Ha/Heoo—

performance/robustness characteristic.
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Figure 6.8: B-T67 mixed H,/H.,~design example, full statefeedback: Singular value
plot of To,(Co, s).



Chapter 7

CONCLUDING REMARKS

In this work a new approach for the general H,, and mixed H,/H.—design prob-
lems has been presented. The approach is based on the representation of M.,
constraints in terms of matrix inequalities. By the use of a new type of scalar
cost function these matrix constraints have been converted to scalar differentiable
constraints that can be appended to any performance-oriented optimization prob-
lem. This formulation makes the mixed H,/H.,—design problem amenable to a
gradient-based solution. The developed scheme can incorporate features such as
fixed-structure/fixed-order controllers, it can accommodate multiple operating condi-
tions and places only a minimal set of system assumptions on the open-loop systems.
In particular it does not impose assumptions on the system zeros or orthogonality
conditions as in previous formulations and provides a general framework for the H,,

and mixed H,/H,—design problems.

In general there is a variety of possible ways to formulate the optimization prob-
lems associated with the H,, and mixed H,/Ho—design problems. Some of them
have been discussed so as to point out alternative routes for posing the minimization
problems. In this work a single cost function has been defined that contains all the
performance cost functionals as well as the penalty /barrier functions associated with
the H—constraints. With this overall cost function the H., and mixed Ho/Hoo
design problems reduce to a sequence of unconstrained minimization problems. Cor-
responding gradient expressions for all the cost functions have been derived in the
appendices. The analysis of these partial gradients has provided valuable informa-
tion on the existence of local minima that do not satisfy the desired H.,—constraints.

Possible ways to exclude such local minima have been presented and discussed.

The defined trace-type cost function has the property that it is convex if the
underlying matrix inequality is convex. This fact allows the formulation of a differ-
entiable convex optimization problem for the full state—feedback single—plant mixed

H3/Hoo—problem applied to a special class of systems. For this class of systems a
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convex upper bound for the H,—cost is considered subject to a set of convex matrix
inequalities representing the H,,—constraint. However, in the general multi-plant
case (or the single-plant case with the exact H,—norm as performance measure) the
H;—cost and the matrix inequalities enforcing the H.,—constraints are not convex. In
this case one can devise alternative optimization schemes based only on the eigenval-
ues that violate the considered matrix inequality constraints and/or on finite-time
Hy-performance costs [64]. The contents of appendix A is intended to serve as a
basis for the derivation of explicit gradient expressions for such schemes as well as
for other modifications to the presented formulation of the H,, and mixed Hy/Hoo
design problems. The included examples are non-trivial and provide valuable tests
for the capabilities of the presented scheme.

In the appendices C and D it is shown that the reformulation of the H..—constraints
in terms of the defined cost function can be applied to H,,—~constrained control prob-
lems where the “performance” criterion is not an H,-norm.

In appendix C the performance criterion is identical to the Froebenius norm of
the static state—feedback gain matrix while the H,,—constraint guarantees robust
stability. Such a performance measure has implications for the noise-sensitivity as
well the control effort in the closed-loop system.

In appendix D performance correlates to time-domain constraints that are refor-
mulated in terms of convex scalar constraints on the closed-loop system matrix and
the state—feedback gain matrix. Furthermore, the problem formulation for the M., -
constrained control problem with time-domain constraints illustrates the applicability
of the presented scheme to discrete-time H.,—constraints. Also, for this problem the
LMI-characterization of H,,—constraints has been utilized. Corresponding gradients
are stated and hence the use of the penalty cost function for the enforcement of
block-structured matrix inequalities is exemplified.

The design methodologies in appendices C and D show that the trace-type cost
function not only allows the incorporation of robust stability in terms of H,, -constraints
in any (gradient-based) performance-oriented design problem. These applications
also illustrate that the cost function is applicable to reformulate other (convex) sym-
metric matrix inequality constraints as (convex) scalar constraints. It is hoped that

this capability opens up venues to solve problems other than these considered here.



Chapter 8

EXTENSIONS AND FUTURE RESEARCH

The defined cost function allows the reformulation of the H,, and mixed Ho/Ho-
design problems as differentiable constrained or unconstrained optimization problems.
To avoid local minima, however, it is necessary to modify the design equations or to
introduce additional constraints. The use of other ARI-forms (see (2.22) - (2.24),
(2.32) or (2.26)), the reformulation of He,~constraints in terms of LMI’s (see lemma
2.2.5) or a combination of some of these inequality constraints may form a computa-
tional framework that eliminates the possibility of undesirable local minima without
additional constraints. That is, a matrix inequality representation of a H.,—constraint
(or a combination of such matrix inequality constraints) is sought such that all the
partial gradients of the functional representation in terms of the defined cost func-
tion are zero if and only if the corresponding H,—constraint is satisfied. A thorough

analysis of the corresponding gradient expressions should prove valuable for this task.

Although ezplicit second-order gradients could not be found for the defined trace—
type cost functions, using (A.80) it appears to be possible to find computable expres-
sions for the second-order derivatives (see [64]). This should improve the convergence
of the nonlinear parameter optimization considerably. Furthermore, for an efficient
solution of the arising optimization problems associated with the H., and mixed
H2/Hoo—design problems “dedicated” software is necessary that takes into account
the specific characteristics of the defined minimization problems. In particular spe-
cialized C or FORTRAN code combined with contemporary nonlinear optimization
software should provide acceptable speed for the function evaluations and gradient

computations as well as the search direction updates.

So far all H,,—design methods depend - in one way or another — on the solution
of ARE’s or ARI’s (LMI’s) which requires the introduction of additional design pa-
rameters other than the controller entries, namely the sought-after solution to these
ARE’s, ARI's or LMI’s. This necessity increases the number of optimization vari-

ables if a gradient-based parameter optimization scheme is used to solve the design
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problem. The eigenvalue structure of the Hamiltonian M., in 2.2.2 on the other hand
provides a means to test whether a closed-loop Ho, —-bound is satisfied or not, based
only on the closed-loop system matrices and hence dependent only on the controller
Co. Hence the exploitation of the special eigenvalue distribution of M, may provide
a unique tool to solve suboptimal H.,—problems with a considerably lower number of
design variables. This fact justifies further research along these lines.

Possible extensions of the presented research include the mixed Hy;/Ho—estimation
problem as well as u—design and ultimately mixed H;/pu—design philosopies if the un-
certainty structure is known and can be exploited.

The p—design problem can be viewed as a scaled Ho—problem with additional
scales D(s) which can be considered as additional optimization variables. Assuming
a state-space representation for the scales D(s), one can form a state-space repre-
sentation of the closed-loop system as a function of the controller Cy and the system
matrices describing )(s). The u-design problem is then equivalent to an H,,~bound
on this (scaled) closed-loop system and thus to a matrix inequality. Hence the exten-
sion of the presented H.,—~design philosophy to the y~design problem follows naturally
from the considerations in this work. Once this problem is solved, the mixed Ha/p—
design objective is approached in the same way as the mixed H,/H,—design presented
here. Note that this formulation allows the solution of the y and mixed Hy/p—design
problems in terms of a sequence of minimization problems that are guaranteed to
converge (though not necessarily to the global optimum). Furthermore, requirements
for fixed-order controllers can be accommodated. Present design algorithms cannot
guarantee convergence and often result in controllers with extremely large order, a
property that is not tolerable for practical control applications.

Mixed H,/H.,—estimation on the other hand is the natural counterpart to the
mixed H;/H.,-control problem. Both LQG and Kalman filtering problems require
the plant to be known exactly, uncertainties as considered in this work cannot be
incorporated. Mixed H,/H . —estimators could prove to be important tools for design
problems where internal states of the system need to be estimated in an “H; /M-
optimal” sense.

Finally, due to the versatility of the defined cost function it is expected that future
research will show that other control problems can be posed as matrix inequalities

which in turn can be solved by the presented penalty/barrier function approach.
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Appendix A
AUXILIARY MATRIX RESULTS

A.l1 General Matrix Results

This section provides matrix results that are of importance to the proofs in this
report. Most of the lemmas are stated without proof. The proofs can be found in

the respective references.

Lemma A.1.1 (Schur Complement)

Let G, H and L be real symmetric matrices, then
G L ¢ L\
g = ’ > 0 A.l
( LT H ) ( LT H ) (A1)

H > 0, (A.2)
G-LH'LT > 0. (A.3)

iof and only if

The Schur complement formula is the basis for the transformation of ARIl-type Ho—
characterizations into any block structured inequality constraint such as in lemma
2.2.4 and lemma 2.2.5.

Theorem A.1.1 (Weyl’s Theorem, [49], p.181)
Let G, H € R™" be Hermitian matrices, let the eigenvalues of G, H and G + H be

arranged in the following order

M(G) < X(G) <o < M(G) = MG,

M(H) S X(H) <. S M(H) = X(H), and

MG+ H) < MG+ H) S <0G+ H)=MG + H),
then

X(G+ HY < \(G) + AH) (A.4)
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fori=1,2,..n.
In particular we have

MG + H) < XG) + MH). (A.5)

Furthermore, for H < 0 we have the monotonicity properties

MG+ H)Y < XN(G) (A.6)
MG+ H) < XG) (A.T)

and, for H >0
Ai(G) < N(G+ H). (A.8)

fori=1,2,....n.
Lemma A.1.2 ([133], p.630)
Let G, H € R™™ be two real symmetric matrices such that G > 0 and H > 0 , then

Trace(GH) < MG)Trace(H). (A.9)

Lemma A.1.3

Consider two real symmetric matrices G and H, then

G<H = Trace[e] < Tracele]. (A.10)

Lemma A.1.4 ([50])

Consider two real symmetric positive-semidefinite G and H and o € (0,1), then

Trace{G*H1-9} < [Trace(G))*[Trace(H)]1 =, (A.11)

This lemma is a direct consequence of Weyl’s theorem and the continuity property of

eigenvalues of hermitian matrices.
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Lemma A.1.5 (Arithmetic—Geometric Mean Inequality, [3])

Let a and b be two non-negative scalars, then
a®b" < aa + (1 — a)b (A.12)

for every o € (0, 1).

Lemmas A.1.4 and A.1.5 can be combined to yield the following result.

Lemma A.1.6 ([50])
Consider two real symmetric matrices G and H, o € (0,1) and a real positive scalar
iy, then

Tv'ace{e[“(;+(l_")m‘f} < aTrace(e“!) + (1 — a)Trace(e?"). (A.13)

Lemma A.1.7 ([50], [67])
Consider the matriz—valued function M(G) = GTHG with H = HT > 0 and a € [0,1]
and GG, H of compatible dimensions such that M(G) is defined. Then

aM(Gi)+ (1 — a)M(G2) — M[aGy + (1 — a)Gy] =
ol — a)(Gy — Go)T (G = Gy) > 0 (A.14)

Jor two matrices Gy and Gy of compatible dimensions.

Lemma A.1.8 ([50], [67])
Consider the matriz—valued function M(G) = G~ for G = GT > 0. Let G and Gy
be two matrices satisfying Gy = GT >0 and Gy = GT > 0, then

aM(Gh) + (1 — a)M(Gy) — M[aG) + (1 — a)G,] = (A.15)
(Y(l - (Y)(;l_l((;z — G])(;Z—lM[(Y(;l + (1 - G)(;z]_lGl_]((;) - (1'1)(1'2_] 2 0.
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Note that lemmas A.1.7 and A.1.8 imply that Trace{GTHGY} is convex in G for
H = HT > 0 and that Trace{G™'} is convex on the set of of symmetric positive—
definite matrices. Next some convexity results are presented that are utilized in

appendices C and D.

Theorem A.1.2
For real matrices G = GT > 0 and real positive scalars 7 the scalar—valued function
f(7, () given by

f(r,G) = (G (A.16)

is jointly conver on G and .

Proof: The proof utilizes results in [58] and is very similar to that. As flar,aG) =

af(7,() we only have to show that
f(T] —*-T-z,(;] +Gz) Sf(T],G1)+f(Tz,G2) (A17)

for two arbitrary real symmetric positive-definite matrices Gy and G, and two positive

scalars 7y and 7,. Let T be a nonsingular matrix such that

T"GWT = Ay =diag(A\y), i=1,2,...,n (A.18)
TTGYT = Ay =diag(Ay,), i=1,2,....n. (A.19)

Such a matrix T' exists for positive-definite matrices G; and G, (see [58]).

frn+n,Gi+Gy) = N(n+ m)* (G + Gy (A.20)
= X[T“{diag(M)}T‘T] (A.21)

A+ Az

_ N ) 7.2 7.‘2 _

= AT l{dzag(ﬁ Aj_ + )} (A.22)

1,2 21
= AR TATT T 4 3T A T T (A.23)
+T " diag(y:)T 7] (A.24)

A2 =T 4)? . .
where t; = — AT220=TA)7 =1,2,...,n.

- (Ari+A20) A0, b=
Thus

f(m 4+ 7, Gy + Gy) = ARG + 7265 + Q) (A.25)
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for Q = T 'diag(y;)T~T < 0 and hence

fli4 7, G+ Gy) < MG + 1367 (A.26)

< MG + MTEGTY (A.27)

= f(11,Gh) + f(m2, G2) (A.28)

which implies joint convexity in 7 and G for G = GT > 0. The inequalities follow

immediately from the above Lemmas and Weyl’s Theorem. An alternative proof can

be constructed using Fischer’s min-max theorem (see [67]). W

Theorem A.1.3

For real matrices G = GT > 0 and real positive scalars T the scalar—valued function

f(r,G) given by
f(r,G) = Trace(r*G™) (A.29)

is jointly conver on (G and 7.

Proof: A proof can be constructed using the same tools as above. It is essentially

equivalent to the proof of Lemma 4.4 in [58] and is omitted here. B

Theorem A.1.4
For real matrices G = GT > 0 and real positive scalars T the matric—valued function

M(r, () given by
_ 1
M(r,G) = 1 -G (A.30)
T

Then the matriz function M(7,G) is jointly convezr on G and .

Proof: M(r,() is affine in G. :—2 is a strictly monotonically decreasing function for

all 7> 0. Joint convexity on G and 7 follows immediately. W
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A.2 (Gradient-Related Matrix Results

In this section various gradient-based matrix results are stated that are required in
the derivation of explicit gradients for the cost functions considered in this work. The
notation concerning gradients with respect to matrices, vectors or scalars is standard
and corresponds to that in [67], [133] and references therein. These references as
well as [90] are excellent sources for further results related to gradient computations.
In the following scalar functions f(K) and matrix-valued functions M(K) of a real
parameter matrix K are considered. The matrix K here need not be square and is
assumed to be a general real matrix of dimensions r x s. Of course, K may also be
a vector or scalar. Also, the attention of this section is restricted to differentiable
functions and their gradient computations. In general the ARI’s and other functions
in the presented formulation for the H, - and mixed H, /Ho~problems depend on two
parameter sets represented by the controller parameters in Cy and the sought-after
solutions to the inequality constraints. These two parameter sets are independent
and hence gradients can be derived independently for the two sets. In this appendix
the matrix K can either be the controller representation Cy or the parameter matrix
X*. Assuming that a scalar function f(K) is differentiable in all the elements of K,

f(K) can be linearized around a nominal point K, as follows.
(K, +dK) = f(K,)+ df(K,,dK) + r(dK). (A.31)

Here df (K,,dK) is linear in the variation dK of the parameter matrix. Furthermore
df(K,,dK) = 0 for dK = 0. The residual term r(dK) collects all the higher—order
terms in dK with r(dK) = 0 for dK = 0.

Gradient computations of scalar functions with respect to vectors have a long
history in control theory. Many functions f(K) can be converted to such a vector
problem by using a vector representation vec(K) of the individual elements of K,

K=K;; (:=12,..r,5=1,2,...5) as follows.
. T
vee(K) = ( Kin Koy o Ky Kiy Koo .. Koy .. K., ). (A32)

Even if this is not possible, gradient expressions of differentiable scalar functions

with respect to matrices can always be reduced to the vector case by forming a
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corresponding vector representation vec(dK ) for the matrix dK to yield the expression

af af af
81{1‘] 01(1‘2 01&},3

df(K,,dK) = ( ) vee(dK), (A.33)
which directly specifies the individual derivatives of f(K) with respect to K;;. Ac-
cordingly we can define the same linearization for the matrix case. Consider a matrix—
valued function M(K) (not necessarily square) where every entry of M(K) is differ-
entiable in all individual matrix elements of K, then the matrix equivalent to (A.31)
18

M(K, +dK) = M(K,) + dM(K,,dK) + R(dK) (A.34)

with equivalent properties for dM(K,,dK) and R(dK). A form of dM(K,,dK) cor-
responding to (A.33) can be derived by the application of the Kronecker product
formula and a representation vec(dK) of dK as in (A.33) (see [67]). However, for this
work it is not necessary to invoke such tools since all the cost function gradients can
be reduced to a form to which Kleinman’s lemma is applicable. There is a multitude
of results concerning gradients with respect to matrices for scalar functions, vector-
and matrix-valued functions. A complete review of the underlying theory is beyond
the scope of this appendix. In the following some results are reviewed that form a
complete basis for the derivation of the cost function gradients necessary for the pre-
sented research and possible extensions as discussed in the body of this report. The
reader is referred to [67] for a more in—depth information on this subject matter. The
product rule and the Cauchy invariance theorem for nested functions are well known
facts for scalar functions of one variable. Important for this research is that there are

matrix equivalents for various scalar differentiation rules as follows (see [67]).

l. Linearity:
Let G(K) and H(K) be two matrix-valued functions of a real matrix K re-
spectively, where G(K') and H(K) have compatible dimensions such that the
matrix-valued function M(K) = «G(K) + BH(K) is defined for some real
scalars o and 3. Assume furthermore that both matrix—valued functions are

differentiable at K, then

AM(K,, dK) = adG(K,,dK) + BdH(K,,dK). (A.35)
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2. Product rule for the matrix case:
Let G(K) and H(K) be two matrix-valued functions of a real matrix K respec-
tively, where G(K) and H(K) have compatible dimensions such that M(K) =
G(K)H(K) is defined. Assume furthermore that both matrix-valued functions

are differentiable at K, then

AM(K,,dK) = [dG(K,,dK)|H(K,) + G(K,)[dH(K,,dK)). (A.36)

3. Cauchy invariance theorem ([67], theorem 13, chapter 5, page 96):
Let G(L) and L = H(K') be two matrix—valued functions of real matrices L and
K respectively, where (L) and H(K) have compatible dimensions such that
the nested function M(K) = G[H(K)] is well defined. Assume furthermore
that G(L) is differentiable at L, with L, = H(K,) and H(K) is differentiable
at K, then
dM(K,,dK) = dG(L,,dH(K,,dK))]. (A.37)

These important results will find repeated application in the computation of various
cost function gradients derived in appendix B. In addition to the above theoretical
framework a result is necessary that is related to matrix inverses. Assume that K is
a quadratic matrix such that |K| # 0 for K = K, and consider the matrix—valued
function M(K) = K~'. For such a matrix function it has been shown ([67], theorem
3, page 151) that

dM(K,,dK) = —K;(dK)K". (A.38)

In general, with the product rule and the Cauchy’s invariance theorem we can state a
more general form for matrix functions involving matrix inverses. Consider a square
matrix-valued function M(K) = [G(K)H(K)]™" with the assumption that M(K) is

nonsingular at K,. Then it can be verified that

AM(K,,dK) = —[M(K,)] ' [dG(K,,dK)H(K,) + G(K,)dH (K., dEK)|[M(K,)]™".
(A.39)
These results are important and give rise to a whole range of explicit expressions for
dM(K,,dK) for various matrix-valued functions M(K). However, we are not inter-
ested in gradients of matrix expressions with respect to matrices. For the purposes of

this research the goal is to find explicit closed—form gradients for scalar cost functions
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with respect to matrices. All the above results are intermediate steps on the way to
find such expressions for the defined cost functions. All gradient computations for
these cost functions can, in one way or another, be transformed into forms that involve
the trace functions. It is well known that the trace operator and the “d-operator”
are interchangeable, that is dTrace[M(K,,dK)] = Trace[dM(K,,dK)]. Hence the
machinery developed above for matrix-valued functions will be applicable for this
type of problem. For the derivation of explicit closed form gradient expressions we

then utilize the important lemma by Kleinman for this type of function.

Lemma A.2.1 (Kleinman’s Lemma, [133])

Consider the trace function f(K) = Trace{ M(K)} where M(K) is a quadratic matric
function of a matriz K € R™**. Assume that M(K) is (in all entries) differentiable
with respect to every element of K. Assume furthermore, that (Ko +dK) — f(K,)

can be expressed as follows.
f(Ko +dK) — f(K,) = Trace{ D(K,)dK}. (A.40)

Then the derivative of f(K) at K = K, is given by

Of(K) o T
5K lk=r, = [D(K,)] (A.41)
where o
(DK N ey = ,f(,‘), k=1,2,..r, 1 =12, ..s. (A.42)
’ dhk’[

A final remark to some notational convention used in this context. In many publica-

tions the following notational system has been used for matrix differentials.

M(K, +eAK) = M(K,)+AM(K,,cAK) + e*R(AK)
= M(K,)+eAM(K,,AK) + ¢*R(AK)

for ¥ > 1. This notation is easily recovered from the one used in this thesis by

applying the following substitutions.

AM(K,,dK) — eAM(K,,AK)
dK — AK.
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A.3  General Differential for Trace{eM(®)lts}

In this section a brief derivation of a general expression for the differential of the cost
function f(K,ts) = Trace{e™MWts} in chapter 4 will be formalized and presented
with some details. Assume that M(K) is a real square symmetric matrix function
of a parameter matrix K. Furthermore, M(K) is assumed to be continuous and
differentiable with respect to K. That is, we assume the existence of a dM(K,,dK)
that satisfies (A.34). In the following let us assume furthermore, that ¢, is given
and that all elements of K are independent. Then we can consider f(K,ts) to be a
function g(K') of K only, namely g(K) = f(K,t;). Using a series expansion of the

corresponding matrix exponential, g(K') can then be expressed as follows.
9(K) = Trace{e™M®lts)
= Tmce{i k—lfc (A.43)
ootk
= Z k—mece{[M(K)]k}

and hence by neglecting higher-order terms in dX and with K = K, + dK,

9(K,+dK) = T7'ace{§: %[M(KO + dK))*} (A.44)
= T7ace{z [M Ko) + dM(K,,dK))*} (A.45)
= T7ace{z [M K,) ik—lfc JENaM(K,,dK)}

) (A.46)

o0 (k_l)
= g(K,) +th7'ace{Z[ 1)![M(K NEDAM(K,, dK))(A.47)
= g(K,) + z‘fTvace{i —lj: K)JdM(K,,dK)) (A.48)
= g(K,)+t/Tr ace{e[M ]tfdM(Ao,d]&)} (A.49)

Hence, for a given t;, we arrive at the following result for this type of cost function.

dg(K,,dK) = g(K,+dK) - g(K,) (A.50)
= t;Trace{eMENgN (K, dK)} (A.51)
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and hence for f(K,t;) = g(K):
df (Ko ty),dK] = tyTrace{e™M BN qp (K, dK)). (A.52)

The only task left is the conversion of dM(K,,dK) into a form such that we can
apply Kleinman’s lemma to derive explicit gradients. This task, however, depends on
the specific structure of M(K) and results for some specific cost functions are derived

m appendix B.

A.4  General Differentials of Eigenvalue Functions

Based on the fact that the above cost function f(K,t;) is expressible in terms of the
individual eigenvalues A[M(K')]) and for various other constraints a brief review of
eigenvalue differentials is included here. Let M(K) be a real square (not necessarily
symmetric) matrix function of a real parameter matrix K. For this general case
we restrict our attention to the case where the eigenvalues under consideration are
simple and differentiable at K = K,. Note that this is always true for a symmetric
M(K). Following the derivation in [67] let A, be an eigenvalue of M(K,). In general
this éigenva]ue will be a complex number )\, = A,. + jA,; where the subscript r
denotes the real part, the subscript ¢ the imaginary part and J =+v—1. Let u, be
the normalized right eigenvector of M(K,) associated with the eigenvalue A, and v,
the normalized right eigenvector of MT(KO) associated with the eigenvalue \,, — j ;.
These vectors are in general also complex vectors u, = u,, + JUoi and v, = v, + JUu;
respectively. Note that the definition of v, implies that (Vor —jvm-)T is the normalized
left eigenvector of M(K,) associated with the eigenvalue A\, = A,, + jA,;. We have
by definition:

M(I{o)(uor +]'uoi) = (/\or +j)‘oi)(uor + juoi) (A‘r)‘;)
MT(A,O)(UOT +jvoi) = ()‘or _j/\oi)(vor +jvoi) (A54)
(uor - juoi)T(uor + juoi) = (vor - jvoi)T(var + jvoi) =1 (A55)

for some eigenvalue )\, of M(K) at K = K,. With these definitions the differential
dA[M(K,,dK)] can be expressed in the following form ([67], page 163).

AAM(K,,dK)] = d\[M(K,,dK)]+ jd\[M(K,,dK)) (A.56)
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_ (Vor — ]voz)TdM(l (o, dK) (Uor + Joi) (A.5T) |
(vo'r - ]Um)T(uOT + oni) )
(uur + juoi)(vor - jUOi)T

(UOT - jvoi)T(uor + juoi)

= Tracef dM(K,,dK)}. (A.58)

Stability constraints and symmetric matrix inequalities involve only the real part of
all corresponding eigenvalues, the imaginary part \,; is irrelevant for such problems.
Hence the differential dA\.[M(K,,dK)] is required for this type of constraint or cost
function, not dA[M(K,,dK)]. By combining equations (A.56) and (A.57) and ex-
amining the real and imaginary components separately (note M(K) is a real matrix
function of a real matrix and hence dM(K,,dK) is real), we arrive at the following

linear system of equations

A [M(K,,dK)]go + dNIM (Ko, dK))gr = ol dM(K,, dK )u,, + vTdM (K., dK u,;
(A.59)
A\ M (Ko, dK )1 + dN[M(K,,dK))gy = vIdM(K,, dK)Yugr + vT.dM(K,, dK Ju,:
(A.60)

with the real scalars ¢; and ¢, given by

@ = VU — VL Uy (A.61)
G = voTiuovaoT,uor. (A.62)

The system (A.59) and (A.60) is readily solved for dA,.[M(K,,dK)] to yield the fol-

lowing result for the differential of the real part of the eigenvalue.

dA[M(K,,dK)] = %[ oD dAM(K,y dK ugr + 0TdM (K, dK )u,:
(11 ‘I‘
+%[UT(1M( Koy dK itgr — v dM(K,, dK Yuoi (A.63)
ai
= Tr ace{[ ~(Uor vl + Upiv
1 ‘Iz
B (0T, — w0 dM(K,, dK)}  (A.64)
qi + 3
= Trace{PdM(K,,dK)} (A.65)
with
P = & (uorvor + UoiV z;) + & - (UOTUZ;' - umUoTr) (A.66)

0 + g3 qi + ¢3
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Note that (¢ + ¢2) is non-zero (see [67]). Hence we have arrived once again at an
expression that is amenable to the application of Kleinman’s lemma once the structure
of M(K) is known. Of course, this formulation is valid only if the corresponding
eigenvalue is simple. In the affirmative case we have derived a nice characterization
of the differential in terms of the corresponding eigenvectors of M(K,) and [M(K,)]T
respectively.

The above expressions simplify considerably for the case when M(K) is symmetric.
In this case all eigenvalues are simple for any K. Moreover, all the eigenvalues and
eigenvectors are real, and u, = v, = ug. This implies that ¢; = 0,¢, = ulug = 1.

Equation (A.65) is still valid for the symmetric case and we have
dA [M(K,,dK)] = dA[M(K,,dK)] = Trace{usuldM(K,,dK)}. (A.67)

Although we have taken a different approach to arrive at this result for symmetric
matrix functions, this result compares nicely to theorem 7 in [67], p. 159.

If the matrix-valued function M(K) under consideration is not convex, then the
cost function Trace{e™M¥)s} is in general not convex either. This gives rise to a
formulation for matrix inequality constraints M(K) < 0 in terms of the cost functions
as defined in (4.13) or (4.15). In the following it will be shown, that gradients for
these alternative cost functions can be found by minor modifications of the gradients
for Trace{eMF)s} without developing a whole new train of thought. Although
this approach is applicable to general non-symmetric matrix functions, here only the
symmetric case is presented. At this point consider a g x ¢ symmetric matrix function
M(K) of a general real matrix K and the cost function f[M(K)].

JIMUK) = 3w (A63)
k=1 .
; = ) EORME)]D? if M[M(K)] >0
SIMK)] = { 0 if M[M(K)] < 0. (4.69)
The corresponding differential is easily found to be
df[M(K,),dK] = id o), dK] (A.70)
k=1
MK dK] — { 20 OWM (Ko DM (KL), ] if MM (o)) 2 0
0 of M[M(K,)] <0

(A.71)
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which , with (A.67), can be converted to

dfiM(K,),dK] = i dfi[M(K,),dK] (A.72)
k=1
dfi[M(K,),dK] =

2ty (MM (Ko))Trace{ugul dM (K,,dK)} if A[M(K,)] > 0

0 if M[M(K,)] <0
(A.73)

with

MK, )uk = MM (K,) g, ||ug]lz = 1. (A.74)

Note at this point the structural equivalence between dfk[M(K),dK] in (A.73) and
df((Ko,t5),dK] in (A.52). The only differences are the additional factor 2A[M(K,))
and the matrix upuf that substituted e (Kot in df[(K,, ts),dK]. Hence, if the dif-
ferential of Trace{elM("lts} is known, the differential dfi[M(K),dK] can be derived

by the following scheme. If Ay violates the desired inequality constraint, then
Af (Ko ty),dK] — dfi[M(K,),dK]
with the following substitutions in df[( K,.t;),dK]:

ty = 2(M[M(K,)))ty

M(K)]t, T

el — UpU

to get the corresponding differential for the k™ eigenvalue of M(K). The overall dif-
ferential df[M(Ko), dK] follows from the summation over the individual components.
Hence the gradient computation for this type of cost function or for the cost functions
in (4.13) can be derived directly from the gradients of the appropriate trace—function

by simple substitution.

A.5  General Differentials of Functions Involving Grammians

Some design constraints involve controllability or observability grammians. In general

these constraints will be of the form

f(K) = Trace{eMF)=Nts) (A.75)
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for some real constant symmetric matrix N and a real symmetric matrix function
M(K) that satisfies

AT(KYM(K) + M(K)A(K) + Q(K) = 0. (A.76)

Note that M(K) in this formulation does not depend explicitly on K., rather, its
dependence on K stems from the facts that A(K) and Q(K) are matrix functions of
K. In general it is assumed that A(K) is a real square matrix function of K, that
is continuous and differentiable with respect to K. Furthermore, A(K) is restricted
to be asymptotically stable at K = K, and K = K, + dK. Q(K) on the other hand
1s a real symmetric matrix function of K that is also continuous and differentiable
mm K. Due to continuity of A(K) and Q(K) and the monotonicity property of the
eigenvalues of symmetric matrices (see Weyl’s theorem) we can conclude the existence

of an expression dM(K,,dK) such that
M(K, +dK) = M(K,) 4+ dM(K,,dK) + R(dK)

as in (A.34). Hence the machinery developed in equations (A.44) through (A.49)
shows that

df (Ko, dK) = t;Trace{eME=Ntrgp (K, dK)}. (A.77)

With the abbreviation E = e[M(F)=Nlts this amounts to finding
df (K,,dK) = t;Trace{ EdM(K,,dK)}, (A.78)

subject to (A.76). With the assumption that A(K) is asymptotically stable at K,
and K = K, + dK, we can express M(K) in terms of an integral over an infinite
time-horizon.

t - -
M(K) = lim | HET7Q(K) AR gy, (A.79)

t—co Jo

Due to the continuity and differentiability assumptions on A(K) and Q(K), corre-
sponding expressions dA(K,,dK) and dQ(K,,dK) are also well defined. Using the
fact [64] that

e[A(}\'»O)_{_dA(KO,dK)]t - eA(Ko)t + /t eA(KO)(t_S)dA(](oa d]()eA(Ko)st (ASO)
0
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we arrive (after some algebra) at the following differential expression for the function
S(K) = Trace{eMK)=-Nlsy,

df (K,,dK) = tyTrace{L1[2L,dA(K,,dK) + dQ(K,,dK)|} (A.81)
where L, and L, solve the following Lyapunov equations,

AKo) Ly + LLAT(K)+E = 0 (A.82)
L A(K,) + AT(K) Ly, + Q(K,) = 0. (A.83)

For more details on this procedure the reader is referred to [64] and [133]. Without
further details it is clear that similar expressions can be derived for the case where
M(K) solves

M(K)AT(K)+ A(K)M(K) + Q(K) = 0. (A.84)

In conclusion, for this type of function we also end up with an expression (A.81) to
which we can apply Kleinman’s lemma once the explicit structure of A(K) and Q(K)

are known.

A.6  Gradients of Scalar Functions with Respect to Symmetric Matrices

So far only gradients of scalar functions f(JK) with respect to general matrices K have
been considered. The case where K is symmetric needs some further elaboration.
However, it can be shown ([90], chapter 10), that this special case can be reduced
to the general case by use of theorem 10.1 in [90]. Under the usual continuity and
differentiability conditions as above and the assumption that K enters f(K) only in
matrix form (that is f(/) is not explicitly a function of individual elements of K),
this theorem states, that for a symmetric matrix K = K7 we have to modify the

gradient expressions to account for this additional information as follows ([90)).

Of(K) _Of(K) Of(K) .  df(K) ]
ok~ oK T ot —Hasl—=") (A.85)

where di(zg{a—g%l} has the same main diagonal as a—(fq—(lgl and zero elements elsewhere.
Note that gradient expression of a scalar cost function with respect to a symmetric
matrix is itself symmetric. With (A.85) the gradient computation techniques devel-
oped above are also applicable to this problem with some extra effort due to the

additional terms in the overall gradient.



Appendix B

DERIVATION OF EXPLICIT GRADIENT
EXPRESSIONS

In this appendix we will provide a complete list of explicit closed—form gradi-
ent expressions for all the cost functions and constraint functions used to solve the
mixed H,/H,,—control problem. The derivation and notation are based on the results
presented in appendix A. For the general multi-plant case with output—feedback all
gradients are based on a representation of the closed-loop systems in terms of the

closed-loop system matrices defined in (3.17) which are repeated here for convenience.

o= A+ B
1 N 511 Rt Y]
a2 = Bl + By
vz Y 3y Yy
("61,2 = Uy + D33C,C4
] _ 1 _ i

clioo T cd,2 T ol

1 _ [ Nty Ny
oo = By + B3C, Dy,
Y1 _ Ni 7Y
“elyoo T (2 + D‘ZS(’OCB
i N 8 Ne > NDi
[)Cl,oo - D22 + D23("0D32’

and

Ri — (71')21_( i )TDi

cl,00 cl,00

Si = (Vz)zl - il,oo( il,oo)T'

The individual matrices A%, B} and so forth are defined in chapter 3. In the following
gradient expressions are derived for the ¢ plant condition only. Depending on the
formulation of the actual optimization problem, gradient expressions for all n,, plant
conditions can be formed from these individual gradient expressions. Furthermore,
the subscript “(*),” has been used in appendix A to denote the point at which
the gradient is evaluated. This convention is dropped here in order to simplify the
notation. Hence in the following Cy and X* are used instead of Cy, and X' respectively

for simplicity.
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B.1 'H.—-Constraint Function Gradients — General Case

In this section we consider the cost functions associated with the pure Hoo—problem

and the corresponding cost/constraint functions in (5.1.1). The first cost function is
3 4 gt ARI; (Co, X"
Farie op(Cos X' 9" 1) = Trace {eARleor(CoX M)ty (B.1)

associated with the ¢** plant condition. In the following, various intermediate steps
are shown for the computation of the ARI-gradients. Because the intermediate steps
require quite a complex notation, these details will be omitted for the other cost
function gradients which can be derived using the same techniques. Two forms of
ARI}7’OF( o, X*, ') will be used in deriving the gradients with respect to Cp and X?.
They are the two equivalent forms of ARI{ op(Co, X*,~*) given in (2.31) and (2.30).

The formulation
AR]Z?,()F((joﬁXi77i) = (Alcl)TX1+XZA:'l+( 7:;[,00) ((‘IOO+P(:UI(Ri) (Ptlu:r) (BZ)

with

Ptzuz =X’ B;loo ((wcloo) Dcloo (BJ)

provides a convenient form of ARI{, 5(Co, X*,4*) for the gradient computation with

respect to Cp while

AR[&,()F(C(h Xi’ 71) = (Arlux)TXl + X A:zu.z‘ + X! B(lzusz + p(iua: (B4)
with
Ajmr = All + Bcloo(Hz) ( Cloo)T 7:1,00 (BS)
B:zu:r = (‘loo(Rl) ( Cloo)T
('tllua: = (71)2( Cloo) (S’l) (‘loo (BT)

is more appropriate for the gradients with respect to X*. The gradients of (B.1) with
respect to the matrix 'y will be derived first. Note that for this derivation X' is

treated as a constant. With the abbreviation

ARIY, 0 (Co . X )ty _ (Eurieop)t (B.8)

1 —
EARIC,OF =€
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the result in (A.52) can be applied to the cost function (B.1) with ARIE op(Coy X7
as given in (B.2) to yield

deRIC,()F [( '70’ Xi’ 71’ tlf] )7 (l(jo]

= thTrace{Eypy,. , dARIL o [(Co, X*,77), dCo]}

=t} Trace{ Eyp,.. ()F(((_”)T(d(’ T(BH)TX + Xt Bi(dC,)C
HCT(AC)T (Dig)TCly o + (€ )T Dig(dC,)

+HXBy(dCo) Dy, + (C5)T(dCo)T (D)™ + (€l 0) T Dig(dCo) (R~ (Pi)T
+ P (BT X B3 (dCo) D, + (C3)(dCo)T (D)™ + (Cy o) Dia(dC,)C3)T
+P(:ux(Rt)_l[(Dl'3).)T(d(7) (DEB)TDCIOO +(Dcloo)TDl23(d(w )DEZ] Rl) ](Pau:v) )}

(B.9)
For individual steps the reader is referred to the machinery developed in appendix
A. In particular the linearity property, the product rule for matrix differentials and
the explicit differential expressions for functions involving matrix inverses as given in
(A.38) and (A.39) have been utilized to derive (B.9). After some simplifications and

rearrangement we arrive at the more compact form

deRI(T’OF‘[( ‘70’ Xl")/ ) d( }

= 2t} Trace{[C} + Di(R') ™' (Pi,,) ]EZRIC,OF (B.10)
[XIB% + (( 7:‘1,00) + Pz:uz(Rz)_l( :‘I.oo)T)DzZS]d(jo}

and hence by applying Kleinman’s lemma to this trace function the gradient of

fj%Rlc,op(CO’ Xt 4, tj,l) with respect to Cp is given by

f)f,ilfilc’op (('70’ Xi’ ’Yi’ t}])
dCy

= zt}l{[é';_*_[)}} ( ) ( aux T]EARIL OF (Bll)
[X*B3 + ((Clrod)” + Prn(R) (Dl o) ) D3]}

for the ¢** plant condition. Note that the computation of this expression involves only
elementary matrix operations such as matrix multiplication, matrix addition and one
matrix exponential for EilRIc,op at each plant condition. Next the gradients of (B.1)
with respect to X* are computed. At this point no symmetry assumption on X' is

imposed. Later on it is shown how this symmetry constraint may be accounted for
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explicitly as pointed out in chapter 5.

dfﬁlRIC(,p [(Co, X*, 7, tj’l)’ dX']
=t} T7'ace{EAR]C'UFdARIéVOF[(CO, X', 4, dX}
=ty Trace{ By oy (A )TN 4 X0 ALy, + dXBL,, ax)
=ty Trace{ By, o (Ao By XVTAX' 4 dX (AL 4 BE X By )
=t T"“(Ze{[EilR1(7,(,p(Ai + B, . X)T + (Al + B! Xi)Ei\RIC_Op]dXi}-
(B.12)

auxr aur auxr aur
Applying Kleinman’s lemma to this expression directly gives the desired gradient

X'+ X*B?

aur

expression in a closed form.

BfQRIC’OF(Co, Xi’ 7i5 fzfl)
oX:

= U {Burie op(Abue + B X7
+(A:1ux + B(iurXi)EilRl(;,OF}- (Bl.})

Finally, for the problem of designing a H.,—optimal controller, gradients of the
cost function fj;RIU,OF(-70,Xi,”7’i17"3'1) with respect to ¢ are required. Note that
ARI&OF( o, X', ') only contains terms in (7')?. Hence, for this problem it is suf-

2

ficient to optimize over (7')%. Without further details and assuming all the above

abbreviations it can be verified that
af/lqu(_‘j‘OF( 707 Xl? ’)’1, t}l)
o7
Differentials for the remaining H,,~related constraint functions f}')(CO,y",tlﬂ) and
f}'((Xﬂt%) in definition 5.1.1 are treated next. Recall that

= _tiflTrace{(Ri)_l(P;ux)TELRIC_OpPi (R)™'}. (B.14)

auxr

(Cov' s 85,) = Trace {elPdaPie=01152) (B.15)

fx(X' ) = Trace {e X0}, (B.16)
and hence the corresponding differentials are as follows.

dfpl(Co 7', tyy),dCo] = 2, Trace{ Dy E(Dutoo)” DasdCo}  (B.17

)

Apl(Co, 7' thy),dX] = 0 (B.18)
dpl(Co ' ty),d(v')Y] = —t,Trace{ Ebd(v')*} (B.19)
dfy [X,175),dCo] = 0 (B.20)

Ay [X t55),dX"] = —t4;Trace{ Eyd X'} (B.21)

A5 [X't55),d(v))*) = 0 (B.22)
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where
E'}) — [D;’[roo[):‘l oo_(’Y')2I]t'fz (823)
Ey = e X', (B.24)

Kleinman’s lemma immediately gives the corresponding gradient expressions. For
easier reference these gradient expressions and the above gradients for the ARI-

constraint functions are summarized below.

i v v i Y ARIY, o p(Co X' )eh
Jaric op (Coy X', 1) = Trace {e*cor n}:

afj‘RIc]op ((70’ Xt’ 717 tzf])

= Qtifl{[cé‘?'D;z(Ri) ( ;uz)T]EARlcop

dCy
[X Bl+(( cloo) +Pz;u.7:(Rz) ( Z‘l,oo) )DES]}T
(B.25)
afi‘Rl(’( (CO’Xi”yi’t}]) i i 7 i 1
=2t Xm = tfl{EARI( op(Aaua: + BauzX )T
Az + B XV Espie. o ) (B.26)

8fj1Rl(?,(')F((‘70’ Xiw 7iv [Jfl)
()

= —ty Trace{(R) ™ (Pi.)" Eipi, o, Pruc(R) ')
(B.27)

with

ARIG op(Co, X' 7)) = (AL)T X'+ X AL, + X'BL. X'+ CL,

aur auxr

Ri = (72)21~( : )TDCloo

cl,00
S = () = DYoo (Dhy )"
Afzuz = A11+Bcloo(Rt) (Dicloc) w:‘.l,oo
Briu:c = c‘loo(Rt) ( loo)T

Crue = (1) (Ci)T(5)7Cl e
[)r:uz = XB::loo_*—((Y:‘loo)TD:‘loo

i _ _ARIL o (Co, X' y)eh
Edrigor = €77 00F s

= 1,2,..n,.
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2. fp(Co, 7', th,) = Trace {e[Dé‘T»ooD;hw_(”')z[]t}?} :

('9 : (7, iwti‘ : 8 ] »
[p(Co, 7, 1%,) = 2t%[D5Ep(Deee)” Dya]”

9Cs
Up(Cot'st) _
oX: =
dfb( 70,7i,ti2) z_ ,'
I(v')* 2 =t Trace{ Ep)
with
Ep = P oDl oo = (42 1ty
1= lazﬁ---,np.

3. f)i((Xiat}g) = Trace {e™* '3}

Ofx (X' tys)
9Cy
Ofx (X, t55) i pi
Of(X' 1)
o(v)?

with

Ej\, = X't

e = 1,2, n,

B.1.1  Modification of the Gradient Expressions for Symmetric X!

(B.28)
(B.29)

(B.30)

(B.31)
(B.32)

(B.33)

Note that for the gradient expressions as derived in the previous sections, the fact

that all X* are symmetric has not been used. The discussion in chapter 5 shows that
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the optimization can be performed over a set of n, upper triangular matrices X*

Xli,l X;,Z Xli,.'} ;‘,(nx,+nc—]) Xli,(nz. +n¢) \
0 X%,Z X;,? .- X‘;,(nx, +nc~1) X‘S,(nx. +nc)
5(1' — 0 0 X‘%.B .- 513,(111, +nc-1) ‘)(.}3.(71.1,4—7%) (834)
0 0 0 v X(lnz,+n._»—l),(nr. +nc—1) X(Z’ILI, +nt—1),(nz.+nc)
0 0 0 . 0 X(an,+nc),(nz,+nc)

from which the matrices X* are formed by X* = X' + (X))T — diag[X!] or X' =
(XHTX' In the following discussion the function fjiRlc,op(CO’ Xi,'yi,t}]) is used
as an example to illustrate the necessary modifications to account for one of these
factorizations. These modifications are easily applied to the other relevant functions
and their gradients. Also, note that the gradient expressions for 7y are not affected
by a particular form of X; and remain unchanged.

Let us first assume a factorization X' = X"+ (X)T — diag[X*]. The cost function

becomes
fleIU,(—,p( 707 Xi? 7ia tj’l) = f,gRIC’OF(COa Xi = Xi + (‘f(i)T - di(lg[Xi]s 7i7 tj’l)

Now gradients with respect to X have to be computed. Following the derivation of
dfiRIC,OF‘[( Yo, XU,y t4),dX ] in (B.12) it can be shown that

afAR]C,()F((:vOa Xi, '}’i’ tj‘l) . af,ilRlc,op(COa Xiy 7:" tif])
oxX: N HXHT

(B.35)

and hence, by invoking (A.85), the gradients of Sari op(Cos X1 2, ‘1) with respect
to a symmetric X* amount to
afAR]C,OF ((70’ Xi’ ’Yi’ t}l) — 28f/i1R10,up((707 Xi» 7i3 tifl)
X' xe=peyr = 9Xi
afjiRIC,OF(CO’ Xiv 7i7 tifl)
ox; '

—diag{
(B.36)

This expression gives rise to the following gradient expressions with respect to X'

afilch,oF((:'o, Xia’)/i,tj-l) affzﬁlc,op((jﬂa Xi’,_yi’tf'f]) |
0X; =1 9Xi [xi=(xn 7]y (B.37)
k,l
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for k = 1,2, ..(ng + ne)y L = k+m,m =0,1,....,n, + n. — k. However, due to
Aftpr . (Co, X'yt th)
v 4 ’ fl . . . . N
the fact that By Is a symmetric matrix, an equivalent expression for

these gradients can be defined in terms of (B.13) as follows.

Manig opCo X ht)

5 i i A g ‘ ko k=1
deR[c,uF( /o,X ' vtfl) _ [ X } (B ‘38)
oXj}, as: (Co.X" "t |
[ ARIU,OFaX(:' i fl)]lc,l if k<l

for k = 1,2, ..(np +n.), Il =k+m,m=0,1,....,n, + n. — k. Note that such an

3% s (Co XAt th,)
N 1 f1 . . .
By 1s not a symmetric matrix!

However, symmetry does hold for all the cost functions and their gradients with

equivalence may not be possible if

respect to X*. Hence (B.38) is equally applicable to all the other functions considered

here.

Numerically both expressions are equivalent. Computationally the formulation in
(B.38) is more effective since it requires less matrix operations than that in (B.37).
Mathematically, however, (B.36) and hence (B.37) represent the correct gradient ex-

pressions for the considered factorization.

Alternatively, symmetry of X* can be imposed by optimizing over the Cholesky
factor X* of X* = (X)T X%, Note that the desired gradients of

fi{RIc,OF(CO’ Xi = (Xi)TXi’ 71" tj‘l)

with respect to X* do not require the special treatment for symumetric matrices as
above. X' can be considered a general square matrix and the gradient expression
will contain the gradients with respect to all the elements of X¢. Of all of these
individual gradients, the gradient-based optimization utilizes only these gradients
that correspond to a non-zero element in X?. For this parametrization the partial

gradients with respect to X? are easily derived from (B.13). With Kleinman’s lemma

-3
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and equation (B.13) the following expressions can be derived.
Winr o [(Co X* = (X)X o 81,), d XY

af;’mc,oF (Co, X' '.ty,)
ax:

=t} Trace{] T[@XHT X+ (XHTdX]) (B.39)

Bfkﬂlc,op(CO‘X"’Y"t}l )

= 2tj’1T7'““€{[ X7 ]T(Xi)TdXi]}

Hence, by application of Kleinman’s lemma.,

8-/‘,2}?,[(7,0):‘((70’ XZ = (X~1)TX~1’72’t1f1) . "iaszIC’op((‘jo’ X1’71’t}1)
— 2X — .
ax: axX:

(B.40)

Thus the gradients with respect to X* differ from the gradients with respect to X*
only by the multiplicative factor 2X*. This is generally true for cost functions that
depend on X* with X* as the optimization variable and X = (X*)TX'. In either case
the gradients with respect to X* can be derived from a modification of the gradients

with respect to X*.

B.2 H,—Performance Cost Gradients — General Case

This section is devoted to the gradient computation of the H,-performance cost
functional Jy(Co,ts3,) defined in definition 3.2.1. Gradients for the most general
finite-time case have been derived in [64] and are not repeated here. The gradients
as presented here require an internally stabilizing controller Cy such that the n,
closed-loop system matrices A% are stable. Thus the limiting case of t;4, — oo
can be used to derive the necessary gradients. As in the last section attention is

th plant condition. The overall gradients can be obtained

restricted only to the :
from the summation over all the plant conditions. Note that this cost function is
independent of the parameters X* and 4. Hence only gradients with respect to (g

have to be computed. For this case the :** cost function is

J3(Co,00) = lim  Ji(Co,tsm,) (B.41)
51‘7’12 —00 2
= lim &[5 (1) 25 (tm,)) (B.42)

tsz—'OO
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t , , ,
= lim Trace{[ ™ Bi \TeAW Tt (oi T ’ At B dt
A el,2 el,2 1,2 ol,2

Ly, —00
(B.43)
= Trace{(B} ;)T L\ B} ,dt} (B.44)
= Trace{B},(By,) L} (B.45)
where L, solves
(AL Ly + LA, + (Co)TChy = 0. (B.46)

Applying equations (A.79) through (A.83) in appendix A we obtain the following

differential expressions.

dJ3[(Co,00),dCo] = 2Trace{Ly[L}B3(dCo)C; + (Ciy)T Dis(dCo)C3]} (B

= 2Trace{CiLi[LyB; + (Cl )T Di3)dCo} (8.48)

with
WL+ LAY+ Bia(Biy)T = 0 (B.49)
LyAy + (AT Ly + (¢ m)TCZu = 0. (B.50)

It follows that the gradient expression is given by

0.];( 70, OO)

U020) o CHAILLBL + (Gl DY (B51)

For more details on the derivation the reader is referred to [64].

B.3  Gradients for the Full State-Feedback Case: Continuous-Time Domain

This section contains gradients for the state-feedback case as considered in chapter 6.
With the controller factorization Co = W X! and the abbreviations given in chapter

6 we need to find the partial gradients of

Jsr(W, X) = T7'(1C6{(761,2X(7§‘2} : (B.52)
= Trace{[Cy + DisWX'|X[C, + DisWX 1T} (B.53)

and

Joo, s (W, X, v, tp1,t43) = Traced eMlosrWXNtyy | o=Xips } (B.54)
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where
[ 4

ARIcspr(W, X,v) = X[A+BWX T +[A+ BWX'|X (B.55)
+y 2 X[Cy 4 DysW X T[Cy + DysW XY X + B BT

with respect to W and X. Using the tools in appendix A, the following differential

can be derived.

dJayse[(W, X),dW] = Trace{Dys(dW)X ' XCh, 4+ Cup X X1 (dW)T DT,
= 2Trace{C],Dis(dW)}, (B.56)

and hence, by applying Kleinman’s lemma, we obtain
0Jy sr(W, X)
ow

Equivalently, for the partial gradients with respect to X we have

=2DT.Cy,. (B.57)

dJyse[(W, X),dX] = Trace{—DiWX ' (dX)X ' XCT, + Cuz(dX)CT,
—Cu2 XX 'dX)X ' XWT DL, (B.58)
= Trace{[C]Cy — X 'WIDLD WX 1(dX)}  (B.59)

and

0J,y sp(W, X)
0X

As Jy sp(W, X) is not a function of «, the corresponding partial gradient is zero. Now

=CTe, - X""WTDLD,wx—'. (B.60)

consider the cost function Jo sp(W, X, v,t1,1s3) for fixed t;; and t;5. Applying the
same machinery as before to the problem at hand, the following gradient expressions

can be derived.

at]oo,SF(Wa Xa 7> tfl’ tf’;)

S = 2n[B] + 77 D5(CoX + DysW)) Earie op (B.61)
OJse sr(W, X, v, ts1,t o . ‘
YSF( o0X L fg) = tfl{ [A + 7 2((’2X + D23W)T(’2]EARIC,SF + (862)

Eartesp[A+772(CoX 4+ DysW)TCH)T } — tyse™ Xt
aJoo,SF'(Wa Xa 12 tfl’ ff';)
0?

= —tyy? T7‘dC€{EARIG,5FX(7Z;m Jetoo X } (B.63)

where

EARIC SF T eARIC’SF(W’X"Y)tﬂ' (864)



Appendix C

H~ AND MIXED H,/H.—DESIGN PROBLEMS WITH
MINIMUM FEEDBACK GAIN: THE
STATE-FEEDBACK CASE

(.1 Introduction and Problem Formulation

Optimal H—controllers may exhibit large feedback gains, resulting in large control
efforts and increased noise sensitivity. Thus suboptimal controllers are normally pre-
ferred, since they do not usually exhibit these undesirable properties. However, the
problem of high-gain occurrence may arise even in the suboptimal H.,—design case
and the mixed H,/H,—design problem when the H,,-bound is too tight. Here the
problem of designing a minimum gain static full state-feedback controller is consid-

ered for the same class of single-plant systems X,/ ,,.sF as in section 6.2.1.

£(t) = Az(t) + Bw(t) + Bsu(t)
) o=ty = Cix(t) + Dizu(t) .
E'Z/oo,op,SF . . f) _ sz(t) n ngu(j) ((/l)

(
u(t) = (1)

with the same signal interpretations, signal dimensions and assumptions stated in
section 6.2.1. Note that a non-zero direct feedthrough matrix from w(t) to z..(t) can
be incorporated into this framework as well. However, without loss of generality we

assume this feedthrough matrix to be zero (see section 6.2.1).

For this type of systems a stabilizing static state—feedback gain Cy = D, is sought

such that the (nominal) Froebenius-norm of the feedback-gain matrix ||Co|lr =

\/Tr'ace{00(7g} is minimized and an H,—constraint on the closed-loop transfer func-
tion Too(Clo, s) from w(s) to z.(s) is satisfied. With the cost function (4.4) in chapter
4 and the discussion in chapter 6 it is clear that the H,-bound can be replaced by
a scalar convex cost function utilizing the controller parametrization Co = WX~ in

[58]. However, the factorization o = W X! renders the criterion for the Froebenius—
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norm ||[W X~!||r of the feedback-gain matrix non—convex. By minimizing an upper
bound for this cost, however, the problem can then be cast into a finite—dimensional
optimization problem that is jointly convex in W and X. Finally it will be illustrated
how to apply this theory to the mixed H,/H.,—control problem with minimum gain
considerations where additional H,—performance specifications are considered for the

transfer function T5(Co, s) from w(s) to 24(s).

Given a static state-feedback matrix Cy, the closed-loop system 32 /c0cl,SF 18 given
by (6.23). For X0 «1,5r the design objective of a minimum gain Hoo—problem is then

defined as follows:

¢ Design Problem P1:

Find a stabilizing state-feedback gain matrix Cy such that || To(Co)l[so < 7 and

(an upper bound for) ||Co)|F is minimized.

We also address the problem where ||Co]|r is not actually minimized but bounded
from above by a certain prespecified value bo. Hence we can define an alternate

criterion as follows:

e Design Problem P1:

Find a stabilizing state-feedback gain matrix Co such that ||Ts(Co)|loc < ¥
and {|Co|lF < be.

The mixed H;/Ho,—control problem with minimum gain can be put into the following

form:

e Design Problem P2:

Find a stabilizing state-feedback gain matrix Cq such that ||7(Co)l|lee < v and

an upper bound for the weighted sum of || T%(C)||» and ||Co|[F is minimized.

Similar to the objective in P1’ we can also include design objectives where bounds
are imposed on ||Ty(Co)|[2 and/or ||Co]|F. These cases will be outlined later. Note
that all problems involving an Hu,~bound have a solution if and only if the associated
pure Ho,—problem has a solution as shown in [140]. Design strategies that include

either a bound on ||Cy||F as in P1” or a bound on || T5(Co)||, such that 1T2(Co)l|2 < by
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may not have a solution even if the corresponding pure H,,-bound problem has a
solution. Note that with the above problem definitions the term “performance” can
refer to either a pure H,—criterion, the Froebenius norm of the state—feedback gain,
or a weighted sum of both. In general all the above objectives will also reduce the

control effort according to ||u|l; < ||Col|F|z||2-

With the controller factorization Cp = WX~!, X = XT > 0 and the results in
section 6.2.1 it is clear that the H,,~bound can be replaced by an ARI-inequality
and hence the scalar criterion

tlim Trace{ eAMtlesr(WXat — g (C.2)
ﬂ—>oo
where ARIc sp(W, X, 7) is defined in (6.29). An upper bound for the Hy-norm of
T5(Co, s) is given by J, sp(W, X) in (6.31). Furthermore, given a t;;, both J, sp(W, X)

ARlesr (WXt are jointly convex in W oand X.

and Trace{ e

The cost associated with the Froebenius norm of the state-feedback gain ma-
trix Cp = WX~ on the other hand is not convex. Hence in order to arrive at an
optimization problem that is jointly convex in the design parameters, one has to ei-
ther find a different controller parametrization for the controller Cy such that all the
relevant cost functions are convex under this new factorization. This is in general
a difficult problem. Alternatively one can maintain the factorization Cy = WX ™!
for which Trace{ eAflcsrWXMtnl and Ja2,5r(W, X)) are known to be convex and
(similar to the upper bound for the Hy—cost) define an upper bound for the gain
criterion ||W X || that is also jointly convex in W and X. Furthermore, this upper
bound should be as tight as possible to the true cost ||[W X ~!||r to avoid unnecessary
conservatism. In the next section such a convex upper bound for ||[WX~!||g is de-
fined that allows the formulation of the above objectives in P1, P1’ and P2 as convex

optimization problems.
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("2 Convex Upper Bounds for ||W X~V||

Theorem C.2.1
Consider the Froebenius norm of the state—feedback gain matriz |Collpr = |[WXY|F

with X = XT > 0 and a positive scalar 7, then the two scalar functions
Jpi(W, X, 7) = %T'ZX(X“) + %Tmce(WTW) (C.3)
I (W, X, 1) = %Trace(TzX"l) + %Trace(WTVV) (C.4)
with 72X > I represent upper bounds for |[W X~||p such that
WX r < Je(W, X, 1) < Jpao(W, X, 7). (C.5)

Furthermore, Jgi (W, X, 7) and Jgo(W, X, 7) are jointly conver on W, X = XT > 0
and 7 > 0. Moreover, an equivalent form for 12X > I is given by the matriz inequality

constraint 21 — X < 0i which is jointly conver on X = XT > 0 and 7 > 0.

T

Proof: The following chain of inequalities proves that Jg;(W, X, ) and Jga(W, X, 1)
represent upper bounds for [|[W X !||r.

WX Yp = /Trace(WX-1X-1WT) (C1.6)
< Trace(r?X-1WTW) (C.7)
s.t. TEX >
< VPAX )T race(WTW) (C.8)
< %T‘ZX(X-‘)JF%Tmce(WTW) (C.9)
< %T'r'ace(TZX_l)—I-%Tmce(WTW) (C.10)

provided that 7 — X < 0. Obviously equation (C.9) is equivalent to Je1(W, X, 1)
and equation (C.10) represents Jp,(W, X, 7). Equation (C.7) follows from (C.6) by
the scaling of ||WX~'||p with 72X > [. (C.8) follows from (C.7) using lemma A.1.2
in appendix A. (C.9) follows from (C.8) using the arithmetic-geometric mean in-
equality with o = I and the facts that A(72X~') > 0 and Trace(WTW) > 0 (see

appendix A). Jp1(W, X, 7) < Jpa(W, X, 7) finally follows from A(Z) < Trace(Z) for

any symmetric positive-definite matrix Z. Convexity of Trace(WTW) is shown in
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appendix A (see lemma A.1.7) along with the other convexity proofs (see theorems
A.1.2 and A.1.3). As the sum of convex-valued functions is convex, overall convexity
follows. W

Unfortunately no explicit expression for the gaps between the desired cost ||Co||r =
[WX~!lr and the upper bounds Jg, (W, X, 7) and Jgy(W, X, 7) have been found.
However, the additional constraint 72X > I is not only necessary for Jg,(W, X, 1)
and Jg(W, X, 7) to be upper bounds for ||W X ~!||r, the additional optimization vari-
able 7 can be used to reduce the gap between the expressions (C.6) and (C.7) and
hence the gaps between ||W X~!||p and the upper bounds. Note that &7 — X < 0 is
equivalent to 72X > I. The constraint Tl—zl — X <0, however, is jointly convex on
X = XT >0 and 7 > 0 while no proof for convexity of 72X — I > 0 has been found
at this point.

Both bounds are continuous in W, X and 7. The function Jg;(W, X, 7) is obvi-
ously a tighter bound than Jg,(W, X, 7). However, Jg,(W, X, 1) is differentiable for
all W, X = XT > 0and 7 > 0 while Jg;(W, X, 7) is not differentiable at points where
AX71) = M(X7Y) = M\(XY), i # 7. This property is important in the numerical
solution of the minimization problem. Convexity of the cost functions Je1(W, X, 1)
and Jpga(W, X, 7) now allows us to redefine the design objectives P1 and P2 in terms
of constrained convex optimization problems. Using the upper bounds derived above,
the cost function representation for the H,,—~bound, the constraint %1 — X <0 and

the upper bound for the H,-cost, the design objectives can be reformulated as follows.

e Pl: Minimum Gain Control with an H.,—Bound:

‘}[}}}(I}T.];)l(W, X, 1) (C.11)
Jpi(W, X, 1) = Jg:(W, X, 1), i=1o0or 1:=2

subject to

tlim Trace { eAPlesrWXtny — ¢ (C.12)
1700
im Trace {e(r%]_x)t”} =0 (C.13)
f2=00
t lim Trace {e ¥} =0 (C.14)
fa—00

7> 0. (C.15)
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e P2: Minimum Gain Mixed H,/H,,~Control:

vl‘}l)i(n Jpa(W, X, 1) (C.16)
Jpr(W, X, 1) = BJpi(W, X, 7) + (1 — B)J2sr(W, X),

=1 or 1 =2

subject to
t,lliigo Trace { eMlesrW XNty — g (C.17)
Jim_ Trace {el7F 1=y — (C.18)
tfgiggo Trace {e™ X1} =0 (C.19)
r>0. (C.20)

where 3 € [0,1] is a weighting factor. For 3 = 0 only the (nominal) H,—
performance measure is taken into consideration, with 3 = 1 the (nominal)

minimum gain control problem is addressed.

Co
of Jpi(W, X,7),t=10ri=2and J,sp(W, X) with the additional constraints

Design objectives such as

F < bc or ||T5(Co)l|2 < by can be incorporated in terms

Ja(W, X, 7) < be, i=12 (C.21)
J')‘,SF(W,X) < b, ((:).22)

These constraints in turn can be replaced by the equivalent scalar representation

tlim Trace {/BWXm)=bcltyy  — g =1 2 (C.23)
f4—00
tlim Trace {el/2sFWX)=taltzs) (C.24)
7500

which can be appended to the above optimization problems. These objectives, how-

ever, are not investigated further in this work.

C.3 Numerical Treatment and Gradient Expressions

The function Jg(W, X, 7) is generally not differentiable. Hence, if one chooses this
function as the upper bound for the minimum gain problem, Ellipsoid or Cutting-

Plane methods have to be applied to solve the problem at hand. For the numerical
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example the upper bound Jg,(W, X, 7) has been chosen. This cost is differentiable
as long as X > 0 and 7 > 0. Hence, gradient—based methods can be used to solve
the optimization problem using this cost function. However, the constraints X > 0
and 7 > 0 are continuity constraints in this formulation and have to be satisfied
throughout the optimization (see the discussion in chapter 5).

Algorithmically the problem can be solved in the same fashion as the mixed
H;/Ho—problem in chapter 6. That is, it can be solved iteratively as a sequence
of constrained optimization problems or, by introducing an overall cost function, as
a sequence of unconstrained minimization problems. The reader is referred to the
discussion in chapter 5 and chapter 6 regarding this procedure. Using the tools de-

veloped in appendix A, the following gradient expressions can be derived.

Lo Jpa(W, X, 7) = Trace(r?X ") + LTrace( WTW)

d Jg: X ]
]BZ((;‘/}/‘} aT) W ((125)
. ) . 1 §
,d ]Bz(aW;X,T) _ _§T2X—z (C.26)
0 Jga(W, X
dJBZ(@T’ ) = Trace(r X" (C.27)
2. Trace {e(f%]_x)tﬂ}:
aT‘ (;%I_X)t!2
race ;{;W by (C.28)
aT, e ‘(712'1_/\,)51‘2
race {;X ;o EPRNE. SR E (C.29)
. . (T%I—X)tjz . 1
0 Trace {;T ;o _2tTf32 NEIE ST (C.30)

All other gradient expressions necessary to solve the above optimization problems

(C.11) - (C.15) and (C.16) - (€.20) for 7 = 2 can be found in appendix B.
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(.4 Example

To illustrate this approach, consider the 4**order system used in [101] and in section

6.2.1. It represents the scaled subsystem of the lateral dynamics of a B-767 aircraft:

—0.0168  0.1121  0.0003 —0.5608
| —0.0164 —0.7771  0.9945  0.0015
T —0.0417 —3.6595 —0.9544 o’

0 0 1 0
] —0.0243
0 —0.0634
B]: 3 3 = . 1
0 —3.6942
] 0

(71:(0 0 1 0), Dz =1,

= (001 0 0.01 0), Dy=00l

The open-loop system is stable and the subsystem T,,(Co, s) has invariant zeros in
the right-half plane. The minimally achievable ||To(Co)|| 1s approximately 0.007
and the minimally achievable H,-norm ||7(Cy)||2 is 0.0078.

In Figure C.1 two curves are plotted. The design points on the upper curve (‘o’)

F = |[WX~!|F by solving the convex

¥
/0

represent the achieved controller gains |
optimization problem P1 defined in (C.11) - (C.15) with Jg(W, X, 7) as performance
cost for a given Ho,—bound 7,,... The design points on the lower curve (‘+’) represent
Co

the resulting F by solving the non—convex optimization problem Py,.:

1&}&1 1CollF (C.31)
subject to: ||Too(Co)lloo < Yspee (C.32)

in terms of the trace cost function associated with the general matrix inequality

ARI:(Co, X, Yspec) < 0 (see chapter 5). Hence no particular parametrization for Co
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IC,

I i 1 1 1 1 i 1

o 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1

10

Y spec

Figure C.1: H,—constrained minimum gain problem: Gain/robustness-tradeoff char-
Col|lr versus specified Ho,~bound v,pee; Problem P1 with Jp2(W, X, 7)
o= WX, 8 =1: identified by ‘o”; Problem P,,,.: identified by ‘x’.

acteristics: |

bl



is assumed for the design points on the lower curve in Figure (!.1. Both curves show a
typical behavior for mixed performance/robustness design objectives. For large vspec,

Y
1Co

Hoo—constraint, that is, if v, is chosen large enough, |

|F is very small. If the overall problem becomes unconstrained in terms of the

CollF will converge to zero
for both design curves (as the open-loop plant is stable for this example). For small
Yspec ON the other hand a dramatic increase in the controller gain can be observed in
both cases. The difference between the two curves illustrates the conservatism of the
upper bound Jg,(W, X, 7) in comparison to the “true” (non-convex) optimization
problem Py..., where no specific controller parametrization and no upper bound for
|Col|r was used. Note that the corresponding controller gains are plotted versus y,pec
and not the achieved H—norm |75 (Co)|lce. For small 7, the achieved 1T (Co)l| oo
1s equal to the specified H—bound. However, for large 4. this is no longer true.
In these cases the achieved ||To(Co)||o were strictly smaller than Yspec, confirming
the conservatism of the H,,—bound characterization ARIcsp(Co=WX™1 4) <0in

terms of W and X as discussed in section 6.2.1

Figure C.2 shows the conservatism of the upper bound Jg,(W, X, 7) (upper curve,
‘x’) that was used as performance cost in problem P1 in comparison to the actu-
ally achieved norm of the controller gain ||W X ~!||r (lower curve, ‘0’). Note that
Jp2(W, X, 7) and ||WX~!||F are plotted on a logarithmic scale, showing that the

convex upper bound Jp,(W, X, 7) for ||W X ~||F is rather tight for all design points.

Figures C.3 through C.5 show results related to solving problem P2, namely
the minimum gain mixed H,/H—control problem. In figure C.3 two design curves
|72(Co)||2 versus vspe. are shown that correspond to the design objective in P2 with
Jp2(W, X, 7), B =0 (pure Hy-problem, lower curve, ‘0’) and 3 = 0.5 (mixed Hy/Hoo-
control with minimum gain, upper curve, ‘*’) as performance costs respectively. Fig-
ure C.4 shows the corresponding controller gains for these design cases. The curves
in Figures C.3 through C.5 again display the typical tradeoff characteristics between
performance and stability robustness where performance in this case can be either the
Hy-objective ||T5(Co)|l2, the controller gain ||[W X~!||r, or a weighted sum of both.
It is clear from these figures that for # = 0 the best Hy-norm characteristic (as a
function of 7ygpec) is achieved. For 8 = 0.5, when the controller gain is taken into
consideration, the H,-performance worsens which is reflected by larger H,-norms

|72(Co)|l2 for 3 = 0.5 in comparison to those for 4 = 0. The resulting controller
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gains on the other hand exhibit the reversed behavior (Figure C.4). This result is
expected and it is further illustrated in Figure C.5 where plots are shown correspond-
ing to the achieved controller gains for the design objective P2 with Jgyo(W, X, 1),
# = 0 (pure H,—problem, upper curve, ‘0’), 3 = 0.5 (mixed H;/Ho—control with
mimimuin gain, center curve, ‘+’) and 8 = 1 (Ho—constrained minimum gain control,
lower curve, ‘4’) respectively. Figure C.5 illustrates that an increase in A implies a
decrease in the controller gains. Note also that for 5 = 1 (lower curve) the controller
gains converge to zero for large Yspeo. This is due to the fact the the open-loop sys-
tem is stable. Hence if v, is larger than the open-loop He—norm |70 (Co)|loo, a
controller Co = WX =1 with W = 0 will “stabilize” the plant and satisfy the speci-
fied Hoo-bound implying ||[WX||r = 0. If Hy-objectives are incorporated (B =0,
= 0.5), then the controller gains do not tend to zero for large 7spec as in this case
the additional performance cost corresponding to ||T5(Co)||; would not be minimal.

The actual choice of the controller depends on the chosen performance specifi-
cations in terms of the controller gains and the H,-performance cost as well as the

necessary Ho—robust stability requirements.
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Figure C.2: H.,—constrained minimum gain problem P1 with Ip2 (W, X, 1), Cp =
WX 8=1 WX (‘o’) and the upper bound Jgo(W, X, 1) (‘%) versus the
specified Ho,—bound v,p...
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Figure C.3: Mixed H,/H~control with minimum gain: H,/robustness tradeoff
characteristics: H,-performance versus specified H.,-bound Yspec; Problem P2 with

JBQ(W, X,T), /3 =0 (‘03) and ,H =0.5 (c*,)'
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Figure C.4: |[W X! versus specified Ho,~bound Yspec; mixed Hy/H,~control with
minimum gain; Problem P2 with Jg,(W, X,7), 8 =10 (‘0’) and 3 = 0.5 (7).
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Figure C.5: |W X |F versus specified Ho,—bound Yspec; Mixed Hy/Ho—control with
minimum gain; Problem P2 with Jg,(W, X,7), 8=0 (‘0’), 8 = 0.5 (‘4’) and 8 = 1
(‘+).



Appendix D

ROBUST STATE-FEEDBACK CONTROLLERS FOR
SYSTEMS UNDER MIXED
TIME/FREQUENCY-DOMAIN CONSTRAINTS

In this appendix the tools developed in chapters 4 and 5 and in appendix C are
applied to design problems that involve time—-domain constraints on the control ac-
tion and the closed-loop system state as well as frequency-domain H.,—constraints.
The problem is formulated in the discrete-time domain and hence extends further the
results presented previously. In order to emphasize the discrete—time domain in this
appendix, all signals are identified accordingly, i.e., x(k) or u(k). Associated transfer
functions in this domain are identified by their dependence on ‘z’, the variable of
the z-transform. For related norm-definitions of discrete-time signals the reader is

referred to [62] or [72].

In the following discussion a system G := (A, B,C, D) denotes a linear, shift—

invariant, discrete-time system

(,_{x(k“) = Az(k) + Buw(k) (D.1)

) k) = Cz(k) + Dw(k)

Such a system G := (A, B,C, D) is asymptotically stable if all the eigenvalues \; of
A satisfy |A\i| < 1. The He—norm for a discrete-time system G := (A, B,C, D) is
defined as

Il = sup &[G(= = )] (D.2)

6efo,2n)

where (7(z) is the transfer function from w(z) to y(z) associated with the system

G = (A, B,C,D).
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D.1 Introduction and Problen: Formulation

A large number of control problems require designing a controller capable of achiev-
ing acceptable performance in the presence of system uncertainty and to given design
specifications usually described in both the time and frequency-domains. However,
despite its practical importance, this problem still remains to a large extent unsolved,
even in the simpler case where the system under consideration is linear. During the
last decade a large research effort has led to procedures for designing robust controllers
capable of achieving desirable properties under various classes of model uncertainties.
The H—framework, combined with g-analysis ([22], in order to exploit the struc-
ture of the uncertainty) has been successfully applied to a number of hard practical
control problems (see for instance [110]). However, in spite of this success, it is clear
that plain He,—control can only address a subset of the common performance re-
quirements since, being a frequency-domain method, it cannot address time-domain
specifications. Some approaches that incorporate time-domain constraints into the
Hoo—formalism have been recently developed ([109], [95], [122]). However, these ap-
proaches require solving large, non-differentiable optimization problems and typically
result in a very large controller order, necessitating some type of model reduction

([122]).

A different approach to robust control has been pursued in [131], [74], where ro-
bustness and disturbance rejection are approached using the /;-optimal control the-
ory introduced by Vidyasagar ([131]) and developed by Pearson and coworkers ([74]).
These methods are attractive since they allow for an explicit solution to the robust
performance problem. However, they cannot accommodate some common classes of

frequency-domain specifications (such as H; or Ho—~bounds).

Finally, a third approach to controlling time-domain constrained systems exploits
the concept of positively invariant sets ([10], [123], [121], [130]). Although this ap-
proach leads to simple design algorithms and has recently been extended to encompass
some robustness considerations, it cannot handle frequency—domain specifications.

In the following an approach is presented that satisfies certain time-domain con-
straints by converting these constraints to problems where set-induced operator

norms are minimized (or bounded from above). The frequency-domain constraints
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considered here are robust stability criteria expressed in term of M., constraints.
Note that H,-performance measures can be incorporated in the same way as in ap-
pendix C. However, this will not be considered further here. Consider the following

linear, shift-invariant, discrete-time system

ek +1) = Ac(k)+ Biw(k) + Bsu(k)
D000, SF ¢+ § Zoo(k) = Cyx(k)+ Dasu(k) (D.3)
y(k) = (k)

where (A, B3) is controllable, D,3 has full column rank, z(k) € R*, w(k) € R™,
Zoo(k) € R">> and u(k) € R™. System uncertainties are assumed to be lumped into
the system A(z) with w(z) = A(2)2.0(2). The controller under consideration is a
static full state-feedback controller Cp = D, realizing the control law u(k) = Coy(k).

Given a state—feedback matrix Cp, the closed-loop system can be expressed as follows:

:I"Cl(k + 1) = Acll'cl(k) + B]U)(k)
= (A4 B3Cy)zqlk
XD co,cl,SF (A4 BaCo)ea(k) (D.4)
Zoo(k‘) = (7cl,ooxcl(k)

= (Cz + D23C0)4Ecl(k)

where Ay = A+ B3Co. Let T, (Cy, z) denote the closed-loop transfer function from
w(2) to ze(2). In face of equation (D.4) we can state the design objectives of the

design problem considered here as follows.

Py, .11 Hoo—Robust Control Problem with Time-Domain Constraints:

Given the system Xp o op sF and two convex, compact, balanced sets ([62]) containing
the origin in their interior, W C R™ and U C R", find a stabilizing static state—

feedback gain matrix Cy such that:
1T (Co, 2)loo <y (D.5)
and, for the nominal system Xp o 4 sr with w(k) =0 Vk,

za(k) €W, Vk, (D.6)
u(k) €U, k. (D.7)



202

Time-domain constraints such as (D.6) or (I).7) have important implications in plants
where the closed-loop system states z.(k) and the control u(k) are required to remain
within certain safety limits. Typical examples for such plants are boiler systems
or power plants. Note that the specific type of time-domain constraints depends
on the choice of the spaces W and U respectively. Constraint (D.5) on the other
hand enforces robust stability with respect to the uncertainties A(z) in terms of an
Hoo—constraint on To,(Co, z). To establish the connection between the problem of
minimizing an induced operator norm and the time-domain constraints (D.6) and

(D.7) a result concerning constrained control problems is recalled ([121]).

Definition D.1.1 ([62])
The Minkowsky functional p(zy) of a balanced conver set W containing the origin in
its interior s defined in terms of a real scalar parameter v > 0 by

plaa) = f {20 € wh. (D.5)

7

A well-known result in functional analysis (see for instance [62]) establishes that
p(xq(k)) defines a seminorm in R**. Furthermore, when W is compact, this seminorm

becomes a norm. This result is exploited in the following lemma.

Lemma D.1.1 ([121])

Consider the system:

.’L'd(k + 1) = Ad;l?c[(k) (Dg)
and let ||.||lw denote the operator norm induced in R"=*"= by W
(i.e. ||AC1Hwé sup  ||Aqza(k)llw). Then, given W and an initial condition
[z et (k)llw=1

z(k =0) € W, the trajectory xy(k) € W for all k if and only if ||Aullw < 1.

This lemma shows that the time-domain constraints (D.6) and (D.7) can be expressed

equivalently in terms of bounds on the induced operator norms || A4 |lw and ||Collw

)
Co

wu2  sup |Cozet]|es-

flza{k)lw<t

[Aallw < 1 (D.10)
Collwar < 1. (D.11)

respectively where |
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Moreover, it can be shown ([123], [124]) that minimizing || A |l maximizes robustness
against parametric model uncertainty and minimizes the effects of the disturbance
w(k). In the next section it is shown how to utilize lemma D.1.1 and the controller
parametrization (o = W X! to convert problem Px_ 7 to a convex suboptimal

optimization problem.

D.2  Reformulation of the Design Problem as a Convex Optimization Problem

Using the controller factorization Co = W X! as in section 6.2.1, corresponding
discrete-time ARI (LMI)—citeria for the H,,~bound have been established for the full

state—feedback case and are as follows.

Lemma D.2.1 ([55])
Consider the asymptotically stable system YD oo, sF. Assume that (Ay, Bs) is con-

trollable and (Ce o0, At) is observable. Then the following statements are equivalent:
LT (Cos 2)]lo0 <

2. ARI: There exists a symmetric positive definite matriz Y such that

ARI[)‘_QF((jo,Y,”y) < 0 (DIQ)
ARIp sp(Co,Y,y) == AqYAL —Y + B BT
+AaYCL IM(Co, Y, )] ' CunnY AT, (D.13)

M(Co,Y,y) = ¥1—-CanYC] .. (D.14)
3. There exists a symmetric positive definite matriz X such that
LM[[)VSF(C'O,X,"y) < 0 (D15)
A T T
LMIpsp(Co, X,v) = | |7 | X(AL CT.)
scl,00
(D.16)

() -3 5
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Lemma D.2.2 ([55])

Consider the same system as in lemma D.2.1 and let Co = WX ™! with K € RwXn=
and X = X7 > 0 € R"*"s then the matriz mapping LMIp sp(Co, X,v) =
LMIpsp(Co=WX1 X, vy) = LMIpsp(W, X, ) with

A+ BsWX-! A+ BsW X! )T
72 + D23WX_1 (\'2 + ngl/V)(_1

By X 0
#(0 ) o=( ) (D17

is jointly conver on W and X. Furthermore, there exists a static state—feedback
o = WX such that |To(Co, 2)||eo < 7y if and only if there are W and X = XT > 0
such that LM Ip sp(W, X, v) < 0.

LM][)‘SF(W, X, ’)/) = (

Hence, even in the discrete-time domain, the controller factorization Cp = W X!
provides a means to represent the H, —constraint in terms of the convex matrix
inequality LM Ip sp(W, X,v) < 0. By utilizing the cost function in chapter 4 it is
then known that the matrix constraint LMIpsr(W, X,v) < 0 and hence the Ho—

constraint ||7,,(Co, 2)|lec < ¥ can be substituted by a convex scalar constraint

tlllillo]oo Trace { etMIpsr WXty — g (D.18)
The equivalent time-domain constraints (D.10) and (D.11) in terms of the induced
operator norms on the other hand depend on the chosen spaces W and U and are not
in general convex if the controller factorization Cp = WX~ is selected. However,
since all finite-dimensional matrix norms are equivalent ([49]), it follows that there
exist constants ¢; and c¢;, depending only on the geometry of the sets W and U, such
that

Iw < alllle (D.19)
llwae < eallllF. (D.20)

Hence, suboptimal time-domain constraints for the inequalities (D.10) and (D.11)
can be defined in terms of the Froebenius norm of the matrices A, and Co. To

this type of cost function the results in appendix C are applicable to define convex
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upper bounds for ||Ay|lF and ||Co||F using the factorization Cy = WX~ for which
the Ho,—constraint can be represented by a convex constraint. Note that only the
differentiable upper bound developed in appendix C will be used here. Utilizing the
triangular inequality, the submultiplicativity property of the Froebenius norm, the
controller factorization Co = WX~ and the results in appendix C, it is easily verified
that

| Acill 7 |A+ BsWX|r (D.21)
< NAllr+ |BsWX | (D.22)

_ I 4 1
IAllF + §T7‘(IC€(T2X_1) + ETrace(WTB;TB;;W)

IN

(D.23)

where 7 > 0 and 57— X < 0 are assumed to hold. Joint convexity of %T?'GCG(TZX—l)
and the constraint :—21 ~X<0in7>0and X = XT > 0 have been shown in ap-
pendix C. Convexity of the term Trace(WT BT BsW) follows immediately from lemma
A.1.71in appendix A as BI By > 0. With ||A||r being a constant, overall joint convex-
ity of the right hand side of (D.23) on W, X = X7 > 0 and 7 follows immediately.
Hence with the results in appendix C and with the factorization Cy = W X! we have

arrived at the following upper bounds for the induced norm inequalities (D.10) and

(D.11).

ildalw < lAdle (D.21)
< A|lF+ %Tmce(r*’-x*‘) + %Tmce(WTBngvV)
(D.25)
and
\Collwe = Cl—_2||WX—1||w,u (D.26)
< IBWX7YF (D.27)
< %Trace(er_l)+%T7'ace(WTW). (D.28)

With these upper bounds, the cost function defined in chapter 4 and the abbreviations
1 1
Jp(W,X,7) = §T7'ace(7'2X—]) + —Q-Tra(:e(WTBg B;W) (D.29)

1 . 1
Jp(BsW, X, 1) = §T7'ace(T2X_1)—|—ETrace(WTW) (D.30)
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we are now in the position to reformulate problem Py _ 7 as a convex suboptimal

optimization problem.

P3"r: Convex Suboptimal H..—~Robust Control with Time-Domain Constraints:

Given the system Xp o op.5F, find W and X = X7 > 0 such that:

1.) t!lligloo Trace { eMMIosrWXiny — g (D.31)
2.) thiE}x) Trace {e~ X2} = (D.32)
3.) t,lsil—l»loo Trace {e[JP(Baw’X'T)_*]t”} =0 (D.33)
1) Jim_ Trace [PV XT=Gliny g (D.34)
5.) r > 0. (D.35)

where b, is the maximum control effort allowed. Note that the performance func-
tional Jp(BsW, X, 1) does not include the term ||A||f which is part of the upper
bound (D.23). This is justified by the fact that ||A||r does not depend on any of the
optimization variables and thus is constant. Once such a controller has been found,
the actual (nominal) bounds on the desired time-domain constraints (D.6) and (D.7)

follow from the chosen spaces W and U and the corresponding constants ¢; and ¢ in

(D.19) and (D.20).

D.3 Gradient Expressions

The suboptimal reformulation of the original problem Py, 7 in terms of P§™; in
(D.31) - (D.35) is generally a multi-objective problem. Numerically it can be solved
using the same tools as in appendix C or in chapter 5. That is, it can be solved either
as a sequence of constrained optimization problems where one selects one of the costs
in (D.31) - (D.35) as performance costs and treats all the other criteria as constraints.
Alternatively one can form an overall cost function (see chapter 5) and solve the
problem as a sequence of unconstrained minimization problems for increasing values
of ty; (¢ =1,2,3,4). The problem is in general differentiable, where 7 > 0 and X > 0
have to be enforced as continuity constraints throughout the numerical optimization
(see discussion in chapter 5). Note that the constraint (D.31) enforces the block-

structured matrix inequality LM Ip sp(W, X,v) < 0. Hence, to derive gradients for
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the cost function associated with the constraint (D.31) the results for this type of
matrix inequality constraints in chapter 4 have to be utilized. Following these results
and the framework in appendix A and appendix B, gradients for the cost functions

associated with the problem P$"" ;. are as follows.

1. Trace { eEMipsr(WXn)tn}

Let

Epsrii Epsra
Epsp = elMipsrWX Mty — m Y ) (D.36)
Epsr2t Epsran

where the partitioning of Fp sp corresponds to the block-structure of

LMIpsp(W, X, v), then

: T
9 Trace LMIp sp(W,X v)tygy B A,
d Trace { e } - 24, D3 Ep.sr 1 (D.37)

ow 23 Cet,o0
: . LMIp sp(W.X )t T
d Trace { e dX ( Yty } _ tfl {ED,SF,H + ( /;12 > ED,SF ( /;‘2 )
T
_X“W( 5, ) ED,SF( B, )WX“‘}
Dy3 Dy
(D.38)

d Trace { eLMID,sp(W‘Xn)m}

or

2. Trace {e[J”(B“W'X»T)—ﬁ]tm} :

9 Trace {e[JP(BsW,X»T)—ﬁ]tfs }

= tg3 BIByW P BWXD=5le(p 40)

ow
1
8 T . , [Jp(BgW,X,T)—C—]t!;; . oL
race {e - Ty, pxer eE xRl gy
(') T . . [Jp(BgW,X,T)—CL]t!;; oL
race {e 5 oy s37 Trace(X™1) e/PBWX D=5l
T

(D.42)
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3. Trace {e[JP(W’X'T)‘%;‘]‘ﬂ} :

0 Trace {e[JP(W’X’T)_%]t“}

bu
ow = tpq W /PN XT= Gt (D.43)
by
9 Trace {7 XM=l 2 e -t
mw{eax bl gt o MRRX B, (D.44)
R [V (W.X,7)— &)tz
d Trace {e ‘ O 2tf4(tf4)e[JP(W»XJ)—%;‘J‘fa (D.45)
or T3

The gradients for all the other cost functions associated with the constraints (D.31)

- (D.35) have been derived in appendix B and appendix C.

D.4  Example

The approach is illustrated on a discretized 4*—order system representing the lateral
dynamics of a B-767 aircraft. The (continuous-time) model is the same as in sec-

tion 6.2.1 and appendix C. For this plant the state-space matrices are given as follows:

0.9966  0.0227 —0.0084 —0.1120
A - —0.0037  0.7952  0.1633  0.0005
| —0.0063 -0.6008 0.7661  0.0003 |’

—0.0007 —-0.0645  0.1779  1.0000

0.1885 —0.0029
—0.000: -0.0762
B, = 0.0003 By = 0.076 ’
—0.0007 —0.6529
0.2000 —0.0683

O, = ( 0.0100 0 0.0100 0 ) Dsys = 0.0100.

The open-loop system is stable, the open-loop Hoo-norm ||To(Co, 2)||eo is 7.4826,
the minimally achievable norm || T, (Cy, 2)||o is approximately 0.007 and the Froebe-
nius norm of the open-loop system-matrix A is ||A]|r = 1.9102. For this plant the

following optimization has been solved for various H.,~bounds Yspec-
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‘}Vn)l(nT Jp(BsW, X, 1)+ ||Allr (D.46)
subject to
Jim_ Trace { etMIpsrWXNtny — ¢ (D.47)
tflzig})o Trace {e= X2} =0 (D.48)
T > 0. (D.49)

Thus, for this example, we actually minimize the upper bound Jp(BsW, X, 7) + || Al|r
rather than bounding it from above. Hence the mixed performance/robustness prob-
lem solved here uses the upper bound Jp(B;W, X,7) + ||A||r as the performance
cost. Robust stability is incorporated by an H.—bound in terms of the constraints
(D.47) and (D.48). This implies an optimization on possible (nominal) time-domain
constraints on x(k). Possible time-domain constraints on u(k) are not explicitly
incorporated in this example. Figure D.1 displays the results for the optimization
problem (D.46) - (D.49) with the given plant. The upper curve (‘*’) plots the up-
per bound cost Jp(BsW, X, 1) + ||A||r versus the specified Ho,~bound Yspee- The
center curve ('o’) and the lower curve ('+’) reflect the resulting Froebenius norms
of the closed-loop matrix Ay (||Ax|lr) and the controller gain W X! (WX 1|F)
respectively.

All curves display the usual performance/robustness tradeofl characteristics. In-
teresting is the fact that ||Ay||F decreases monotonically up to 7spec = 0.1. For
Yspee > 0.1 ||Aul|F increases and converges to the open—loop norm ||Al|F. This fact is
due to the stability of the open-loop system. Note, that for y,,.. > 7.4826, W = 0
will satisfy the required Ho,~bound and “stabilize” the system and ||Ay||F = ||A||F =
1.9102 in this case. The achieved controller gain ||W X ~!||r on the other hand shows
the typical performance/stability robustness tradeoff and exhibits the behavior al-
ready encountered in the equivalent continuous—time example (see section 6.2.1 and
appendix ). Depending on the type of time-domain constraints on z4(k), the cho-
sen spaces W and U and hence the constants ¢; and ¢, one would now select one of
the design points to derive the actually achieved bounds on the desired time-domain

constraints.
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Figure D.1: H,,—constrained control with time-domain constraints: Jp(BsW, X, 1)
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Appendix E
MULTI-PLANT H,-DESIGN SOFTWARE

The underlying approach for the H.,,~design software is equivalent to that presented

ot

in chapter 5 except for the notational convention. That is, n, open-loop plants of

the following form are considered here.

= AT() + Biu'(t) + Byuwi(t)
= Ciz'(t) + Dihwi(t) + Diuwi (1)
2(t) = C3F(t) + Dyui(t) + Diuwi(t)

for 2 = 1,2,...,n,. This notational convention is most widely used in literature (see

T

E:X) ,op : yi(

(E.1)

e.g. [115]). For a given plant condition, model uncertainties are assumed to be

lumped into a stable, norm-bounded A*(s)-block,

i 1 &
1A (s)]|eo < = (E.2)
Y
with the usual feedback connection
w' (s) = Al(s)zt_(s). (E.3)

The state vectors x*(t), the control inputs u'(¢) and the disturbance input/criterion
signals w’_(t) and z!_(¢) are assumed to have the same dimensions as in chapter 5.
That is, z*(t) € R"=', w' (t) € R'v%, 2 (t) € R™%, ui(t) € R™ and y* € R™' for

t = 1,2,...,n,. All the involved matrices are aqsumed to have compatible dimensions.

The controller C'(s) has the same form as in (3.4) with a corresponding parametric

D. C.
2 = . E.4
0 (BC AC) (E-4)

With these definitions and the notation in this appendix, the system assumptions

representation

corresponding to the H,~design problem in chapter 3 are as follows.
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Assumptions:
A1l: (A%, B)) are stabilizable pairs for all i = 1,2, T

A2: (A, C) are detectable pairs for all i = 1,2, ...,n

Py
A3: dim(u') = n, = n, and dim(y') = ny =n, forall 2 =1,2,...,n,,
A4 Dh == Dll = ... = D;L{) = [)11.

These assumptions have been discussed in chapter 3. Given a controller C, with the

state-space realization (3.4), the corresponding closed-loop plants are given by

1
2:00 cl

) { )= A ®) o+ Bl () (E.5)

Z;O(f) = (W:l ool 1(t) + Dcl oW (t)

for: = 1,2,...,n,, where (with the notation in this appendix) the closed-loop matrices

are as follows,

G.o= A4+ BOCE
e = By BiCDy (E.6)
Mo = O3+ DyLC,CH
[)Z‘loo = Dzzz + D121 D;z

where

_ D _ . _ .
Di‘z:( Ou)’ [)31:<D-zz1 0)» Dy, = D3,

With the n, closed-loop matrices A’ oor Clioo and DYy the n, Mo, —constraints

cl,oor Hel,o0
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1T5(Coy 8)|loo < 7 are then equivalent to the system of matrix inequalities (3.30):

1.) ARIL op(Co, X' 7)) <

2. DT D (4

) cl,o0 el 00 (’\/ ) . < (E?)
3.) -X' <

4.) Xt = X7

where the corresponding matrix expressions in (E.7) have been defined in chapter 3.
An important observation on a lower bound for all X* has been made in theorem
2.2.1 of chapter 2, namely

X' > L (E.8)

where L' is the observability grammian that satisfies

T z T Al T ,n _
Acl,oo o + Lo cl,00 + “clyoo M eloo T 0’ (Eg)

i

cl,00

Xt =L+ X'+ X7 — diag(X?) for a set of n, upper triangular matrices Xi. This

assuming A is stable. Hence, solutions X* satisfying (E.7) can be rewritten as
knowledge is explicitly incorporated into the design software. Rather than having a
set of n, optimization variables X*, we optimize over n, upper triangular matrices X!
(see (5.13)) from which X*is formed by X* = L + X4+ XT —diag(X*). The condition
— X' < 0 can then be replaced by the condition that —(X* + X7 — diag(X')) < 0
as L' is positive semidefinite. Symmetry of X* is explicitly taken into account in
this formulation. The enforcement of the required stability constraints on A}  is
described later.

To avoid local minima in this general purpose design package an additional con-

straint of

Afwz + Bj“in to be asymptotically stable (E.10)

with
Ajlua: = i‘l + B:;I,oo(Ri)_]( il,oo)T(?jl,m (Ell)
B{iu:l: = Bil,oo(Ri)_l(Bil,oo)T (EIQ)

is enforced as well (see discussion in chapter 5). The set G contains the specified
Hoo—bounds +* and is defined in chapter 5 and for further reference the following set

is introduced.

X = { X' X' upper triangular, 1 =1,2,..,n, }. (E.13)
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E.1  Design Cost Function

With the above sets and abbreviations and the cost function defined in the body

of this report the multi-plant H.,~design problem stated in chapter 5 can now be

restated as follows.

“Find an internally stabilizing controller '3 and a set X' of n, matrices X that

solve the following minimization problem.

p

J(CZ X = lim mmZJdes (Co, X't 15 Lo
t']k S Co, X
(k=1,2,3,4,i=1,..,np)
Ties(Cos Xty b 3 t50) = [faee( Coy X' 851) + f3.004(Cor )

+f.';-,des(Xi : )-}_.féi(ie>.<>'()(t tf4)]

fiaes(Co, X¥85y) = Trace {e"”’“‘“‘“ﬂ}
fres(Cortys) = Trace {e 0N 1Pl Dalt
f.;,des(j(ivtj's) = Trace {e (X' + X7 —diag( x|]tf3}

nx.-{-nc . . ,
fraeo X5t0) = 30 (faaes) k(X7 15,)]
k=1
_ L [ePlkfie — 112 if (M) >0
1 . X‘l,tl — i
(f4,des)‘v( f4)] { 0 lf (/\re)L<O

where

ARIY(Co, X') = (X'Blj o + Ci Do J(R) WX By, + CIT
+ AT X+ XA+ CTL.Ch

Xi=L 4+ X'+ X'T — diag(X)],

Xiis upper triangular,

Ao 1

A 7 +L1 cloo+(“T Wz :0,

clioo ™o “el,oo N el,00

)T

cloo

is stable,

(At + B X N(wre)ic + 3 (i )i) = [(Are)ic + 7 (Aim )il [(ure)i + 5 (wim )3)-

20ty 1)

(E.14)
(E.15)

(E.16)
(E.17)
(E.18)

(E.19)

(E.20)
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If a solution can be found for C} and X'* that yield a finite value of J(CZ, X*), then it
is guaranteed that all the specified H,—constraints are satisfied. The overall number

Tyar Of possible optimization variables in the minimization problem is

7lp
Nyar = Neon + Z E(nx, + n)(ng +ne.+ 1) (E.21)
=1
where 1, is the number of selected optimization variables in Cj.
In our approach the variables t}k (k=1,2,3,4, i=1,..,n,) act as scaling vari-

ables in the overall cost function Y07, Ji_(Cl, X7, }1, }2, }3, t}4). Starting with small

i=
values of t}k we proceed to optimize the objective function Y12, J*(Cyp, X*, }1, }2,
t's,t44) until a reasonable convergence has been reached for these values of t}k. The
values t}k are subsequently increased and the optimization is repeated. This process
is continued until all the constraints have been successfully satisfied. In this case, a
controller that satisfies all the Ho,~bounds has been found. The convergence often
fails when the objective function cannot be improved further after the specified num-
ber of iterations has been exhausted. In this case the chosen H,,—bounds may be

either too small, or the desired controller structure is too restrictive.

E.2  Gradient Expressions

The gradient expressions for all relevant cost functions can be derived using the
formalism in the appendices A and B. With the new characterization X! = L +
[XP 4+ XiT — diag(Xi)] the according gradient expressions are quite complex but are
included at this point for the sake of completeness for the case Cost_sel = I (Trace-
type cost function). Gradients for the cases Cost_sel = 2 and Cost_sel = 3 are easily

found from the results for Cost_sel = I (see Hi_des_grad.m). Using the following

definitions
E; — eARI‘( To,X')t}l’ (E22)
E; — 6_[(1')21—[)27:001321,00“}2’ (E.‘ZB)
Ef5 _ e_[X|+X|T_din,g(Xi)]t}3, (E.24)
Lll = il,oo + BZ‘I,OO(Rz)_ID:"lI:oo cfl,oo'i (E25)
Ly = Bl (R)BY., (E.26)
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L
Ly
L
Lg
L;
Ly
Ly
LiO
Lll.l
Ly,
Ly

1
L14

Lis
Lig
Ly
Lis
Lis
Lio
Ly,

(oe)i —

Cll oo [Diyoe (R DT+ NCT (E.27)
X Bl oo + Ci o Dl e (E.28)
(L} + Ly X) . (E.29)
[CF + D (R LT ES, (E.30)
X'Bi +[Ci, + Ly(R)'DT_1Di,, (E.31)
E{(Al . + Ly(R)' BT, (E.32)
Ly + Ly, (E.33)
Al Lio + LigAT 4 Li = 0, (E.34)
AT L3+ Ly Al + CIT O =0, (E.35)
CiLio(Lyy B + Dyy), (E.36)
Dyt Dy . E3 DY) (E.37)

(92); w V(o] ) wi V(o] )i
(q{,)i_*_(qf)l[( Te)k( 're)k+( zm)k( un)k]

*W@W“ VoD~ (o) (0T (E.38)
L5+ LX)+ (im)i] = (el + 5 )i lCtre )b+ G (0]
L5+ LX) G (i )h] = ()b — o) () + 7 (v )]
(utre i = i )1 (ot ) 3 ()] = 1
(”cm) ] [(Ure) + 7 (Vim k] =1
(@0k = 0T} = (o0

(@) = (v3)i(wim )i + (V)i (ure)i

CiLis + Dip(R) T [DF Ol oo Ls + Bly o (LIEXT + XP(Lig)] (E.39)
B + By o (R)T' DI D, (E.40)
DL (R) T BY L CHL [T + Dy o (R DT 1D3, (E.41)
LisLy+ LyLi, (E.42)
L, (E.43)
Al oLy + Ly AT+ Lig = (E.44)
CiLao[LieBi + O, Dy (E.45)
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L'izz = LlllSLzl-G + Llﬁ + L'in (E.46)

the gradient expressions can be written as follows,

0f1i,des( 70’ Xi? tlfl)

e = th(L5+ LY (E.47)
0 : es (77Xiati i ; ) 1
Pl B0 ot (v 1 4 1) (E.48)
03 4es(Cos thy) N
0% = b (B4
dfi,des(Xi’ i‘ ) 1 B
W aae (X 85)] - [ 2t [0 — 1R Ligif () > 0 (E.51)
aXi 0 if M)k <0
B(f;,des)k()zi’t,ifﬁl)] _ 2t§4[e(Ar6)Lt}4 — e Ll if (Ae)i >0 (E.52)
9Co 0 if (e <0

All the other partial derivatives are zero. Gradients of the overall cost function are
given by the summation over all the plant conditions of the individual gradients
at each plant condition using equations (E.47)-(E.52). Note that the cost function
fj’des(f(i, t}4) is differentiable only if the according eigenvalues are simple. This for-
mulation has worked well in a practical implementation. There may, however, be
situations where the algorithm fails to converge due to the presence of parameter
combination such that the cost function fjvdes(f(",t"“) is not differentiable. To cir-
cumvent this problem, an additional set of parameters needs to be introduced (see
discussion in chapter 5). Such additional variables, however, would increase the com-
putational burden considerably and hence this route is not chosen in this design

package.

E.3  Program Structure

1
cl,00

The above formulation requires that all A7, _ are stable matrices. Hence before start-
ing the optimization on the above overall cost function a controller has to be found

that internally stabilizes all n, plant conditions simultaneously. For this reason the
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overall algorithm is divided into two phases as follows.

Phase 1:

Find a controller C'(s) that stabilizes all plant conditions simultaneously such that
7(D: ) <+ for all plant conditions. This phase utilizes a cost function similar to
that in (E.19) and (E.20) defined on the closed-loop matrices A . (see Hides.m

and Hi_desfunc.m).

Phase 2:
Optimize on 27, Ji_ (Co, X t}l, }2, }3, t'4) for increasing values t}l, t}z, t}3 and t'ﬂ

until all H.,—constraints are satisfied.

E.4 Program Description

E.4.1 Software Requirements and Global Variables

The included MATLAB-files are written for the MATLAB-version 4.1 and require

the following additional toolboxes:

1. Control Systems Toolbox
2. Robust Control Toolbox

3. Optimization Toolbox

MATLAB 4.1 offers the capability of limiting the scope of the global variables.
Namely, if a variable is not defined as a global variable inside a function, then it
is considered a local variable there.

In MATLAB 3.xx a global variable is global everywhere. Hence, if the user is in-
terested in running Hi_des.m on MATLAB 3.xx, the removal of the global statements
in all functions is a possibility. The variables that are required globally have then to
be defined as global variables before calling Hi_des.m. These global variables have

the following names:

o Globalvar n_p n_u n_y n_¢c N_var N_varX N_varCo N_varX_ind

o System_I System_2 System_3 ...
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o Dimensions Dimensions_! Dimensions_2 Dimensions_3 ...
o Co_fir Covar_fir C_optim Co_var_Indexset Xvar_fir X_optim

e D_optim Stab_bound Stab_only Cost_sel

These variables will be erased from the global workspace and should not be used in

the external program calling Hi_des.m.

E.4.2 MATLAB Functions

The software includes the following MATLAB-files:

e Hi_des_inpu.m

e Hi_des.m

Hi_des_func.m, Hi_des_grad.m

Hi_des_upda.m, Hi_des_tfup.m

Hi_des_opti.m, Hi_des_qupr.m, Hinorm_comp.m

A copy of this software can be obtained directly from the authors. For this reason a
listing of these files is not included in this work. All of these programs are MATLAB-
functions, that is, except for the global variables, they do not share common variables.
All functions have an extensive header containing information on the purpose of the
input and output variables, and the required global variables. This information can
be retrieved by typing “help Hi_des.m”, “help Hi_desdnpu.m”, ... and so on. In the

following we will describe each file separately.

1. Hi_des_inpu.m

This function requires the user to enter the plant data for each plant condition.
Except for the data storage, this function does not have any input or output
arguments. Before this routine is called, the user should have the following data

ready for input:
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2.

o A filename under which the plant data will be stored. The data will be
stored in the chosen filename plus the extension _hi.mat. For example, if
the chosen filename is “Test”, then the data will be stored in a MATLAB

data file named “Test_hi.mat”.
e 1, is the number of plant conditions.

e n, and n, are the dimensions of the measurement vector and control vector
respectively. Note that these two dimensions must be the same for all plant

conditions.

® n,, n, and n, are respectively the dimension of the state-space plant
o0 [e)
model, the dimension of the disturbance vector w!_, and the dimension of

the criterion vector z* for the %"
o @)

plant condition.

e The system matrices for each plant condition are saved in the following

form:

A BB
Systema = | Ci DY, Di,
¢y py D
Note that the matrices D}, are required to be identical for all plant con-
ditions. It is suggested that the user stores these matrices in a zzz.mat
file which can be retrieved during an input session. The variable names

for these matrices should however not conflict with the global variables as

defined above.

Hi_des.m

This function contains the main program. This is the function to be called for
the actual design of a controller. Its input and output arguments as well its

internal organization are discussed below.

Hi_des_func.m

This function computes the function value ¥, Ji_ (Co, X7, }1, }z,t}gwtff({) as
defined above. The variable Cost_sel (specified in Hi-des.m) can be used to

redefine the cost f} ;.. ( ,}'O,X",t"ﬂ) in terms of the eigenvalues of the ** ARI
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similar to (E.19) and (E.20). For Cost_sel = 1 the trace-type cost function
is applied, for Cost_sel = 2 or Cost_sel = 3 the cost function is defined in
terms of the eigenvalues of the ¢** ARI (Note that Cost_sel is a global variable
and it is defined in Hides.m). The specific cost functions ff 4.,( 70,5(",1‘,}1)

corresponding to Cost_sel are as follows.

e (Cost_sel =1:

f] des( Oaxl tfl) = T'race {eARI (CorX? )tfl} (ES‘S)
o (Jost_sel =2:
' o ' nz,+nc ) . -
fli,des( ’:’O,Xﬁt}]) = Z (f]l,des)k'( 707X2’t}1) (E54)
k=1
: Arelifin 112 4f  (Ae)i 20
i b(Co, Xt5) = 16 Foaf Qi 200 o)
! 0 if (e < 0.
o (ost_sel =3:
7LI,+1LC . o .
JiaeCo X)) = 5 (fi geae(Coy X\t (E.56)
k=1
. e IOV i (A2 0
L Ve(Co, X ) = nilAre)i k= E.57
(fl,des)k( 0 fl) { 0 Zf (A,—e)z < 0. ( )

For Cost_sel = 2 and Cost_sel = 3 in the above formulae (},.)} represents the
real part of the k** eigenvalue of the :** ARI: ARI'(Cy, X’) The gradients are

computed according to the variable Cost_sel.

. Hi_des_grad.m

This function computes the gradient of the function ¥.2, Ji (Co, X gl }1,1"”,

tj‘B,t}“) as defined above.

. Hi_des_upda.m

An auxiliary function that updates important variables needed to compute new

values for tifk.
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6. Hi_des_tfup.m

An auxiliary function that computes the new values for tjfk. The specific values
used for the tj»k—updates have been derived empirically and worked for a range
of problems. However, there may be problems where this update scheme is
not sufficient. Users who are familiar with the MATLAB script are encouraged
to alter this routine for improved convergence. However, when the function
is altered the following numerical issues should be examined carefully. First,
continuity and smoothness are relative properties when numerical methods are
applied to an optimization problem. In general the scaling variables tj.k should
not be increased to large values (in comparison to the other t}k values) even if
the corresponding inequality constraint is satisfied. Such a t}k update scheme
would introduce unnecessary numerical problems due to “almost non-smooth”
components in the overall cost function. On the other hand, in some cases the
values for tjk may be “too small” resulting in convergence problems due to large
differences (on the order of magnitude) between the gradients with respect to

C, and those for X*.

Hi_des_opti.m

This file contains the optimizer which is a modified version of the original con-
strained optimization program constr.m (see MATLAB optimization toolbox).
The input parameters can be chosen such that information about the progress
of the optimization is printed after each line search. In the follwowing a typical

sequence for one of the optimizations is displayed.

f-COUNT  FUNCTION MAX{g} STEP Procedures
1 1101.55 0 1
31 1101.55 0 1.86e-09
55 1101.25 0 1.19e-07
385 424.405 o 0.125 mod Hess(2)

Intermediate Optimization Terminated Successfully

In this display “0->COUNT” shows the number of function evaluations used in

this particular optimization. The factor “FUNCTION” is the (unscaled) func-
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tion value of the overall cost function. This value give hints to how fast the
algorithm is converging. If (for Cost_sel = 1) all relevant scaling factors t}k
are larger than one and the overall cost function is smaller than one, then the
design goal has been reached. However, the H,,-bounds may also be satisfied
even when the cost is larger than one. The value “MAX{g}” shows whether or
not additional constraints are violated or not and should be zero at all times.
The only constraints incorporated in this software are possible bounds on the
controller entries. Hence, as long as MAX{g} = 0 all specified controller con-
straints are satisfied. The step-size parameter “STEP” is a good indicator as
to whether the optimization has converged after the optimization is completed.
Extremely small step size parameters indicate that the optimization does not
progress very well. The column under “Procedures” displays the mode of the

Hessian update.

The individual optimizations started with Hi_des_opti.m can terminate with the

following diagnostic messages:

e “Intermediate Optimization Terminated Successfully”: This run has con-
verged, the (norm of the) vector for the search direction and the function

decrease are sufficiently small.

e “Maximum number of iterations exceeded”: Hi_des_opti.m terminates be-
cause the number of function evaluations has exceeded the limits specified
in the variables Nr_amproveC and Nr_amproveX. Clearly in this case

convergence has not yet been achieved.

e “Insufficient cost function decrease”: Hi.des.opti.m terminates if the func-
tion decrease was smaller than 107 over 6 consecutive line searches with
STEP = 1. (Most likely the problem requires an update of the t}; or it

needs a rescaling of the optimization variables).

e “Overall cost is smaller than 1: All Hi-bounds satisfied”: If Cost.sel = 1
has been selected in Hi_des.m, then a function value smaller than one with
all t}k > | guarantees that all the specified H,,—bounds are satisfied and

a further optimization is not required.

o “Warning: No feasible solution found”: No solution has been found that

satisfies the specified upper and lower limits Py and Pp.
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Note that these messages relate to the success of individual optimizations and
not to the achievement of the overall H,-design procedure. Other than these
messages the subroutine Hi_des_qupr.m may also produce warning messages if
the corresponding quadratic programming problem is ill-conditioned or encoun-
ters problems. In general the behavior of Hi_des_opti.m can be manipulated with
the variable “Options” defined in Hides.m. The Options—vector in Hi_des.m
has the same meaning as the OPTIONS-vector defined in MATLAB (for more
information on this variable, type “help foptions” in MATLAB).

Hi_des_qupr.m
Quadratic programming subroutine for the computation of the search direction
after a line search has been completed.

Hinorm_comp.m

An auxiliary function to compute the H,,~norm of a linear time—invariant sys-

tem.

In general extensive information is also included within the function files themselves,

and they are rather self-explanatory. Furthermore, all files contain auxiliary warnings

and messages detailing the progress and flow of the overall H.—design procedure.

E.[.3

The Function Hi_des.m

As mentioned above, Hi_des.m is the main function containing the structural setup

of the algorithm as described earlier. This routine can roughly be separated into 6

sections:

1.

Input Variable Check

In this part all the input variables are checked for compatibility of the data.
The only thing the user has to take care of is to make sure that the system

assumptions 1 and 2 as defined in the previous section are satisfied.

2. Generation of Initial Guesses for the X?



Depending on whether the user hands over an initial guess for these matrices
or not, and whether the initial controller guess Co;, is stabilizing or not, initial

guess for the matrices X' will be generated (see below).

Find a Stabilizing Controller (y

If the initial controller guess is not stabilizing for all the plant conditions, an
iteration is started to try to find such a stabilizing controller. If no stabilizing
controller can be found after a number of iterations (please refer to the variables
Nr_iter_stab and Func_stabilize in Hi_des.m), then the program will terminate

at this point.

Improve the Initial Parameters Xt and Cojn

If no X, has been defined by the user, or if some of the eigenvalues of the
ART’s or the matrices R are very large, then a certain number of “improvement
loops” is invoked. In these loops a certain number of optimizations (please re-
fer to the variables Nr_iter_impC, Nr_improveC, Nr_iter_impX and Nr_improveX
in Hi_des.m) are performed individually on Co;, and the matrices X* respec-
tively. Failure of convergence can be observed when these values are chosen too
small in relation to the number of optimization variables, if one or more of the
Ho—bounds 4* are chosen too small or if the chosen controller structure is too

restrictive.

Main-Iteration Loop

In this part of the program we optimize on Cp and the matrices X*. After
each iteration the user will get an update displaying the relevant time t}], the
maximum eigenvalue of all ARI’s (over all plant conditions) and the achieved

H.,—norms for each plant condition.

Re-incorporation of a Possible Dy; # 0

In this section of the algorithm we re-incorporate the possible case where D, #
0 (as described before) when the final controller is well-posed, i.e., if Z =
(I — Dy D)1 exists.
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The function Hi_des.m has to be called with 7 input variables and 3 output variables
as
[Cogut, Gammag,y,, Xout] = Hi_des(Filename, Gamma, Coy, P, Py, Xin, Prat,,, ).

In the following subsection we will discuss the form and meaning of these variables.

E.4.4 Input/Output Arguments of Hi_des.m
1. File_name (string)

This variable identifies the file where the data was stored during an input session
with the function Hi_des_inpu.m. The extension _hi.mat will be automatically
appended to this filename and must not be included in this input argument.
For example, File name = test’ would result in a data file named "test_hi.mat’

to be loaded.

2. Gamma, Gamma,, (vectors)

(Gamma (input) contains the desired H,~bounds for the n, plant conditions
and hence has the dimension n, x 1 (or 1 x n,).

Gammage, (output) contains the values of the achieved H, -norms for the
n, plant conditions after Hi_des.m has terminated. Gamma,., has the same

dimensions as Gamma.

3. Cojy, Coout (matrices)

Cogy, (input) is the initial controller guess in the format

Coin = Dcm ("Cm
B A

Cin Cin

compatible with Cy as defined in the previous section and hence has the di-
mensions (n, + n.) x (n, + n.). The controller dimension n. is determined
automatically based on the variables n, and n,. In this way the user can
choose different controllers with different n. for the same plant data without
having to repeat the input routine Hi_des_inpu.m.

Cogyt (output) contains the final controller after the execution of Hi_des.m has

been completed.
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4. P, Py (matrices)

Both of these matrices must be of the same dimensions as the chosen controller
("0;,. These matrices determine lower and upper bounds on the individual
entries of the desired controller, i.e. P < Cogyy < Pyy. The bounds P and
Py can also be used to fix the structure of the controller. For example, let us
assume that n, = n, = 1 and the chosen input parameters Co,,, P, and Py

are as follows:

0 -10° 0 01 2 0 10° 100
Py = 0 0 1 y,Copo =100 1], Pu= 0 0 1
—10° —10° -10° 1 2 3 10° 10° 10°

Then the desired controller structure is a strictly proper controller in the con-

0 1
az1 a2
B. = 0
ba1
0

trollable canonical form with

11 C12 )

and the additional constraint 0 < ¢;5 < 100. The initial controller guess is
expected to satisfy the desired bound P, < Co;,, < FP;. When the structure
of the controller is unconstrained; that is, when we adopt a general proper
controller with no bounds on its entries, then the program will assume the
default bounds of —10° < C,;; < 10°. In this case Hi.des.m can be called with

the following arguments:

1) No lower and upper bounds are specified (unconstrained):

[Coout, Garmnmagep, Xout]z Hi_des(File_name, Gamma, Cop, [ ],[ ], Xin, Proty.,).
i1) Only the upper bounds are specified:

[Cogut, Gamnmagy,, Xout]z Hi_des( File name, Gamma, Coy,, [ ], Py, Xin, Proty.,)

ii1) Only the lower bounds are specified:
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[C0out, Gammagen, Xous )= Hides(Filename, Gamma, Coy, Pr, [ ], Xin, Prot,ae,)

- Xin, Xout (vectors)

As defined in section 3, we optimize over a set of n, upper triangular matrices

Xi. Each of these matrices is of the form

Vi 1 1 i V1
X],] X],Z X1,3 1,(n 1) 1,(n, +nc)
1 1 V1 V1
0 2,2 2,3 X‘Z,(nx, +nc.—1) X'Z,(nr. +nc)
Vi Vi 1
X{ _ 0 0 X3,3 . XB,(nI. +nc.—1) 3,(n s +nc)
Vi i
0 0 0 " X(nx.+nc—1),(nx. +nc—1) (ngi+ne—1),(n i +ne)
[
0 0 0 .0 Ko rtmer )

The variables X;, and X,,; are saved in a vector array as follows

Xi" = [ 11,1 11,2 . 11,(7111-0-715)
X'Zl,'l Xi3 " Xi}.(nzl +nc) (17le tHrc)i(n,1+nc)
Xiz.l Xiz,2 . Xiz,(nﬁ +nc)
Xi2 Xia o X3 pne) = Koy tne) ina )

v lip v iip np
X] 1 Xl,'Z . Xl,(nzn,,-{-nc) "

T O T n N

)(7-3 X'Z}; T X2,}()nznp +ne) T X('r:;np +nc),(n np +nc)]
It is important that Hi_des.m be started with an initial guess X, that satisfies
X' > 0 (initial guesses with eigenvalues A(X?) < —0.2 are rejected and result
in an error message!). Typically when the initial guess of X;, is not available,

then Hi_des.m may be invoked with the following input arguments
[Cooue, Gammagey, Xoui]= Hides(File name, Gamma,Coy,, Pr, Py, [ ], Prnt,,.).

Note that one could also restart Hi_des.m with X,,, obtained from an earlier
run as initial guess for X;,. In this case, the above required conditions will be

automatically satisfied.

Prntyay (non-negative scalar) This input variable controls the amount of screen

output during the optimization.
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0 < Praty,, <5 Only the most important messages are printed.

5 < Praty,, < 10: Ouly the most important diagnostic messages and a brief
summary of the design results after each main-loop
iteration are printed.

10 < Prot,.,: In addition to the above output Hi_des_opti.m will
print the function value, the step size and the number

of function evaluations after each line search.

E.5 Examples

E.5.1 Ezxample 1: One-Plant Case

This example is taken from [88] (see also example 1 in chapter 5). It is a 3"%-order
single input/single output plant with one measurement and one control input. The
example satisfies the system assumptions in [24]. For more details on this plant please
refer to [88]. In the following we will first demonstrate how to enter the data using
the input routine Hi_des_inpu.m. Then we show excerpts from the diary file created

during the Hi_des.m execution with this plant data.

E.5.2 Input of the Plant Data: Hi_des_inpu.m

Before the Hi_desinpu.m file is called, a MATLAB data file Rid.mat must be cre-
ated in which the system matrix has been stored under the variable name S1. This
simplifies the input of the plant data in the routine Hi_des_inpu.m considerably. The

actual call of Hi_des_inpu.m produces the following diary file.
>> Hi_des_inpu

Are you a new user or need preliminary information? -- y/n n
ook ok ok Kok oo ok ok kK ok ok ok ok ok o sk sk ok sk sk sk o sk ok sk sk ok kK R R ok o SR ok o sk ok ok K KK KKK KKK KK KK KKK K ok kKK K

Input the file name (char) under which the plant parameters will be
stored.

Please enter the input file name : Examplel
NOTE: If the file Examplel_hi.mat already exists, it will be overriden !

3k sk st ok ok R ok Ko ok ok K ok ok o ok sk ok ok o ok 3k s ok sk ok sk ok okl ok ok K o ook ol 3 ok ok ok o ok sk ook ok o ok kK Kok ok ok ok ok ok ok K
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Input the number Np (integer>=1) of different plant conditions :1
Sk ok sk Kok KKK R R AR KR AR K KK KKK R ok o ok ok sk o sk oK ok Kok sk o ok Kok ok o o K o

Input the number Ny of measurement outputs : 1
kKKK KKK KK KoK oK oK oK Sk KoK oK ok ok ok sk s ok ok ok ok ok ok ok ek sk ok KK K KK K KKK K K ok ok o o o ok ok ok o o o o o sk o ok ok ok ok

Input the number Nu of control inputs : 1

Aok ok ok ok ok ok ok oo ok ok K K ROR KR K oKk o ok o o s o ok ok koK ok oK oK KK K R R KR Sk oK Kok K ok ok Kok ok o ok oK
PLANT CONDITION 1

Enter the dimension vector [ Nx , Nwi , Nzi ] : [31 1]
a0 ok ok o o ok o oo ok ok e e Kok o oK o oK oK K K ok ok o ok ok ok o ok ok ok ok sk ko ok sk ks ok K KoK o ok ok ok ok o o ok ok o e o ok ok ok ok ok oK

Input the corresponding system matrices for
PLANT CONDITION 1 with the following format:

[A ,B.1 ,B.2 ;
C_
c

1
2 ,D.21

]
o
]
N
N
—

-- Pressing the <RETURN> key will put you into the keyboard
mode to load data. When done, enter the command
"return” to exit the keyboard mode and continue the program.

Enter the system matrix (e.g.,[a,b;c,d]):<RETURN>
K>> load Rid
K>> return

Enter the system matrix (e.g.,[a,b;c,d]): S1
ok ok o ok ok ok ok ok ok o R R R R R R Rk K ok ok ok kKo ok o sk oo o ok ok ok ok ok ok o o o o s o o ok ok o ok o o ok ok ok ok ok ok o ok

Please wait.... Saving the data in Examplel_hi.mat
Done

While waiting for the the input of the system matrix, the <RETURN> key is pressed.
This places MATLAB into the keyboard mode. The file Rid.mat containing the
system matrix under the variable name S1 is then loaded. We exit the keyboard

mode to the normal mode by entering “return”. We give the system matrix S1 as the
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input data. This completes the input of the plant data. The file “Examplel hi.mat”

is now the basis for the subsequent call to Hi_des.m.

E.5.3 Controller Design: Hi_des.m

To illustrate the working of the Hi_des.m m-file for the H,, control problem, we
include below a listing of the file Examplel.m which contains a setup of the initial

design variables and a call to Hi_des.m.

[/

% Examplel.m file
)

clear

clear global

File_name = ’Examplel’
eval([’load ’ File_name ’_hi’])

Global_var
System_1
Dimensions_1
n_p
n_u
n.y
pause
Gamma = 2.3;
Co_in = [0 1 2 3;
1 6] 1 0;
1 0 0 1;
1 1 2 3];
P_L = 1e9x%[ 0 -1.0000 -1.0000 -1.0000;
-1.0000 -1.0000 -1.0000 -1.0000;
-1.0000 -1.0000 -1.0000 -1.0000;
-1.0000 -1.0000 -1.0000 -1.0000];
P_U = 1e9%[ 6] 1.0000 1.0000 1.0000;
1.0000 1.0000 1.0000 1.0000;
1.0000 1.0000 1.0000 1.0000;
1.0000 1.0000 1.0000 1.0000] ;

X_in 0;
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Prnt_var = 30;

{Co_out,Gamma_ach,X_out] = ...
Hi_des(File_name,Gamma,Co_in,P_L,P_U,X_in,Prnt_var)

%

% End Examplel.m

A

The design goal is to synthesize a full-order (n. = 3) strictly proper controller
that satisfies the specified Ho,—constraint Gamma = 2.3. As reported in [88], the
minimally achievable H,—norm for this plant is approximately 2.1426. For the fol-
lowing sample run the following parameter values were chosen: Nr_iter_impC = 4,
Nr_improve(C' = 400, Nr_iter_impX =3, Nr_improveX = 700 and Cost_sel = 1. Execu-
tion of Examplel.m produces design results that are saved in a diary file. A partial

listing of the results is given below.

>>Examplel

File_name =
Examplel

Global_var =
Dimensions_1 System_1

System_1 =
-0.3908 -0.4565 1.2657 -0.4275 0.0488
1.4453 -1.0481 -1.2077 -0.4470 0.3608
-0.1288 0.6744 1.0324 -0.9172 0.3564
-1.5567 -1.9432 -0.0914 -0 0.5185
0.9420 0.0144 0.1187 1.3575 0

Dimensions_1 =

3 1 1
n_p =

1
n_u =

1
n_y =
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Gamma =
2.3
Co_in =
0 1 2 3
1 0 1 0
1 0 0 1
1 1 2 3
PL=
1.0e+09 *
0 -1 -1 -1
-1 -1 -1 -1
-1 -1 -1 -1
-1 -1 -1 -1
P_U =
1.0e+09 *
0 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
X_in =
(]
Prnt_var =
30
Maximum real part of all A_cl eigenvalues : Lambda_max_Acl = §5.42

Trying to find stabilizing controller satisfying
sigma_max(D_cl) < Gamma for all plant conditions!

£-COUNT  FUNCTION MAX{g} STEP Procedures
1 27.115 0 1
2 1.6919 0] 1
3 0.0337288 0 1
18 8.73314e-24 0 1 mod Hess

Intermediate Optimization Terminated Successfully

f-COUNT  FUNCTION MAX{g} STEP Procedures
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1 9.47196e-15 0 1
2 0 0 1 mod Hess
3 0 0 1 mod Hess

Intermediate Optimization Terminated Successfully

The controller is stabilizing all plant conditions
and satisfies sigma_max(D_cli) < gamma_i !

for all plant conditionms.

Continuing to improvement phase/main iteration loop

No initial guess for X_in is given!

OR:

Some of the ARI eigenvalues are extremely large

Trying to find better initial guesses for the main iteration
- or as initial guesses for a restart of this program

Starting the improvement phase:
Optimizing on Co only:

Updating Tf-values, please wait

f-COUNT  FUNCTION MAX{g} STEP Procedures
1 8.23622 o 1
2 6.00063 0 1
3 6.00063 0 1

Intermediate Optimization Terminated Successfully

Updating Tf-values, please wait

f-COUNT  FUNCTION MAX{g} STEP Procedures
1 41.0173 0 1
2 6.00477 0 1
3 6.00477 0 1 mod Hess
17 6.00046 o] 1 mod Hess

Insufficient cost function decrease



Updating Tf-values, please wait

f-COUNT  FUNCTION
1 1101.63

14 858.956

27 109.521
399 6.02436

MAX{g}
0]
0
0

0
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STEP Procedures
1
0.000244
0.000244

1 mod Hess

Maximum number of iterations exceeded

Updating Tf-values, please wait

f-COUNT  FUNCTION
1 1101.585

31 1101.55

56 1101.25
385 424 .405

MAX{g}
0
0
0

0

STEP Procedures
1
1.86e-09
1.19e-07

0.125 mod Hess(2)

Intermediate Optimization Terminated Successfully

Number of improvement steps on Co exceeded,
continuing with optimization on X only:

Updating Tf-values, please wait

f-COUNT  FUNCTION
1 48.1392

12 44 .2766

25 42.7976
643 5.08314

MAX{g}
0
0
0

0

Insufficient cost function decrease

Updating Tf-values, please wait

£-COUNT  FUNCTION

MAX{g}

STEP Procedurss
1
0.000977
0.000244

1 mod Hess

STEP Procedures
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1 426.689
20 426.098
36 413.426

423 5.63867

0 1
0 3.81e-06
0 3.05e-056
0 1

Insufficient cost function decrease

Updating Tf-values, please wait

f-COUNT  FUNCTION
1 59.9748

26 69.9744

49 59.95659
699 34.7229

MAX{g}
0 1
0 5.966-08
0 2.38e-07
0 1

Maximum number of iterations exceeded

End of improvement phase,
Continuing with main iteration loop

Updating Tf-values, please wait

Starting Iteration
Maximum real part of all ARI eigenvalues :
Maximum real part of all A_cl eigenvalues:

1 with (minimal)

Achieved H_inf-norms for all plants:

f-COUNT  FUNCTION
1 35.6239

30 35.6238

56 35.6223
886 2.93837

System
MAX{g}
0 1
0 3.73e-08
0 2.98e-08
0 1.49e-08

mod Hess

STEP Procedures

Tf = 87.4
Lambda_max_ARI
Lambda_max_Acl

: 2.86993

STEP Procedures

Intermediate Optimization Terminated Successfully

0.0366
-0.787



All Hi-constraints satisfied

Co_out =
1.0e+02 *
0] 0.
-5.61830215774721 -0
-2.49550980375480 -0
-5.38689628028888 -0

Gamma_ach =
2.23701497229569

X_out =

1.0e+03 *
Columns 1 through 4

1.15630229860465 0.

Columns 5 through 8
-0.17205624462823 0

Columns 9 through 12

0.05674695169626 0.

Columns 13 through 16

0.10204208348404 O.

Columns 17 through 20
0.03635819909302

Column 21
0.08537398653844

-0.

00267772193123

.62007701815391
.60157220605899
.72850304408728

09249883566253

.28165410889259

05866233452346

08925625378226

05844568069746

.00091843489067
.03497247440197
.43420296505282
.29185379848967

.67301817161558

.70696049742409

.08565256194329

.14769868862166

.03311347764003
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.00144300504148
.40920200207161
.60648866763827
.09084576068794

.19397056072923

.156953506186834

.40848499439910

.04001880566657

.056313227808173

As it can be seen, the algorithm converges to a controller that satisfies the specified

Ho—bound. After the improvement phase, only one main iteration was necessary to

satisfy the design goal. This fact further illustrates the importance of good initial

guesses for the controller C'o;,, and for the matrices X*. If no such good initial guesses

were available, then appropriate starting values will be determined in the preliminary

optimization phase. The improvement phase resulted in a maximum ARI-eigenvalue

of 0.0366. During the subsequent main iterations the H,,—norm was reduced from
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Gammagq, = 2.86993 to Gamma,y, = 2.23701.

E.5.4 FEzample 2: Non-Standard Plant

The example considered does not have any particular physical meaning. However, it
is a rather challenging problem since it violates all the system assumptions made in
[24] and [113] hence rendering these approaches incapable to solve this problem. The

open—loop system X, ., is given as follows.

¥ = *11i1+0u]+0wlo
0 1 1 1

y! = (0 1)21
0= (-1 1)2

This plant is detectable through y' (but unobservable) and stabilizable via u! (but
uncontrollable). Furthermore, the problem is singular and certain subsystems have
invariant zeros on the jw-axis (please refer to [24] and [113]). The open-loop system
1s unstable and the controller for this example is a static output-feedback controller
of the form v = Ky. It is easily verified that the controller will stabilize the plant for
any K < —1. The Hy-—norm of the closed-loop transfer function from w!, to 2zl is
given by

Too K, 8)||o = —
Il =
The startup file Example2.m for this case is:

[/

% Example2.m file
h

clear

clear global

File_name = ’Example2’
eval([’load ’ File_name ’_hi’])
Global_var

System_1

Dimensions_1

n_p

n_u

n_y



pause

Gamma =
Co_in =
P_L =
P_U =
X_in =
Prnt_var

{Co_out,Gamma_ach,X_out] = ...
Hi_des(File_name,Gamma,Co_in,P-L,P_U,X_in,Prnt-var)

h
% End Exampl
h

le-4;
0;
~1e5;
0;
0;
30;

e2.m
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Here we start out with a destabilizing controller and allow K to vary within the
bounds —10° < K < 0. To achieve the desired Ho-bound of Gamma = 1071 the

algorithm has to find a controller K < —10*. The following diary shows the execution

of the file Example2.m.

>> Example2
File_name =

Example2

Global_var =

Dimensions_1 System_1

System_1 =
-1 1
0 1
0 1
-1 1

Dimensions_1
2 1

O O~ O

S O -=» O
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n.y =

Gamma =
1.000000000000000e-04

Co_in =
0

P_L =
-100000

Prnt_var =
30

Maximum real part of all A_cl eigenvalues : Lambda_max_Acl =
Trying to find stabilizing controller satisfying
sigma_max(D_cl) < Gamma for all plant conditions!

£-COUNT  FUNCTION MAX{g} STEP Procedures
1 5.99999 0 1
2 0.999988 0 1
3 0.999988 0 1

Intermediate Optimization Terminated Successfully

The controller is stabilizing all plant conditions
and satisfies sigma_max(D_cli) < gamma_i !

for all plant conditions.

Continuing to improvement phase/main iteration loop

No initial guess for X_in is given!

OR:

Some of the ARI eigenvalues are extremely large

Trying to find better initial guesses for the main iteration
- or as initial guesses for a restart of this program
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Starting the improvement phase:
Optimizing on Co only:

Updating Tf-values, please wait

£-COUNT FUNCTION MAX{g} STEP Procedures
1 1098.81 0] 1
2 3.02448 0] 1
3 3.02448 0] 1 mod Hess
19 3.00101 0 1 mod Hess
Warning: QP problem is -ve semi-definite.
20 3.00033 0 1 mod Hess
Warning: QP problem is -ve semi-definite.
21 2.99863 0 1 mod Hess
22 2.99863 0 1 mod Hess

Intermediate Optimization Terminated Successfully

All Hi-constraints satisfied,
terminating Co-improvements;
Attempting to find solutions X for the ARIs

Number of improvement steps on Co exceeded,
continuing with optimization on X only:

Updating Tf-values, please wait

f-COUNT  FUNCTION MAX{g} STEP Procedures
1 3.00775 0 1
6 2.81566 0 0.0625
8 2.5653 0 0.5

Overall cost is smaller than 1: All Hi-bounds satisfied

All Hi-constraints have been satisfied after the improvement phase



242

Co_out =
-1.000000000000000e+05

Gamma_ach =
1.000000002370170e-05

X_out =
0.17528500753256 0.00000102832300 0.00094205358802

The algorithm found the desired controller already in the “improvement phase” of
the algorithm. In the subsequent optimization the algorithm attempts to find a solu-
tion X that satisfies the corresponding ARI-constraint. The Quadratic Programming
sub—problem during ﬂu%opﬁnﬁzatknlbecanu%senﬁ—deﬁnhf%asthe(xnmroﬂergahl1(
reached its specified limit Py = —10°.

This example shows that this algorithm can accomodate a much larger class of

H.. control problems and systems than the approaches in [24] and [113].

E.5.5 FEzample 3: Multiple Plant Case

The last example is a simultaneous Hoo—design for a F-15 aircraft at two operating
conditions. This example has been investigated in [105]. The operating conditions
represent a subsonic and a supersonic flight condition. Both models are of 4"*-order
and the controller to be designed is a proper 1*-order controller. The corresponding

startup file is in Example3.m and its listing is given below.

h

% Example3.m file

%

clear

clear global
File_name = ’Example3’
eval([’load ’ File_name ’_hi’])
Global_var

System_1

System_2

Dimensions_1
Dimensions_2



n_p
n_u

n.y
pause

Gamma

Co_in

P_L

P_U

in

Prnt_var

1e9%

1e9%

1;

6;

[0.11 0

[-1
-1

[1
1

[Co_out,Gamma_ach,X_out] = ...

Hi_des(File_name,Gamma,Co_in,P_L,P_U,X_in,Prnt_var)

4
% End Exam
%

The first execution of Example3.m resulted in the following output results.

>> Example

File_name
Example3

Global_var

ple3.m

3

Dimensions_1 System_1 Dimensions_2 System_2

System_1 =

Columns 1 through 8

-0.0082
-0.0002
0.0007
0
1.0000
0

-25.70
-1.27
1.02

0

0

1.00

0
1.00
-2.42
1.00

-32.17

o O O O

-6.80
~-0.14
-14.06

-0.55

o O O O

0
-0.27
0.99

o O O

0

20.99

0

0
0
0
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System_2 =

o O O O

Columns 1 through 8

-0.01
-0.0001
0.0006
0
1.0000

Dimensions
4

Dimensions
4

n_y =

Gamma =
0.1000

Co_in =

-95.91 o
-1.87 1.00
-3.61 -3.44

0 1.00
0 0
1.00 0
0 1.00
0 0]
0 0
0.01 0
-0.16 0
1=
3

2=

3

0.1500
2 4
2 4

1.00

o

-32.11

o O O O O O

1.00

o O

O =

O O O O O

-25.40
-0.22
-53.42

O O OO0 O OO O

o O O O O

]
o
~
©

O 0O OO0 O O OO0 O

O O O © O

-0.39

N
o
N3

O O OO0 O O O O

O O © OO

~
o0
NN
M O O

O O OO O O O O
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1.0e+09 *
-1.0000 -1.0000 -1.0000 -1.0000 -1.0000
-1.0000 -1.0000 -1.0000 -1.0000 -1.0000

P.U =
1.0e+09 *
1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000

X_in =

t

Prnt_var =
30

Maximum real part of all A_cl eigenvalues : Lambda_max_Acl = 4.38
Trying to find stabilizing controller satisfying
sigma_max(D_cl) < Gamma for all plant conditions!

f-COUNT  FUNCTION MAX{g} STEP Procedures
1 36.4748 0 1
5 1.118e-05 0 0.125
6 1.118e-05 0 1

Intermediate Optimization Terminated Successfully

The controller is stabilizing all plant conditions

No initial guess for X_in is given!

OR:

Some of the ARI eigenvalues are extremely large

Trying to find better initial guesses for the main iteration
- or as initial guesses for a restart of this program

Starting the improvement phase:
Optimizing on Co only:

Updating Tf-values, please wait

f-COUNT  FUNCTION MAX{g} STEP Procedures
1 1748.08 0 1
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18 1654.85 o 1.53e-05
35 1062.08 0 1.53e-05
222 19.642 0 1  mod Hess

Intermediate Optimization Terminated Successfully

Updating Tf-values, please wait

f-COUNT FUNCTION MAX{g} STEP Procedures
1 472.433 0 1
19 470.111 0 7.63e-06
38 457 .481 0 3.81e-06
177 356.439 0 1 mod Hess

Intermediate Optimization Terminated Successfully

Updating Tf-values, please wait

f-COUNT FUNCTION MAX{g} STEP Procedures
1 £522.758 0 1
23 522.721 0 4.77e-07
44 622.161 0 9.54e-07
164 517.261 0 1 mod Hess

Intermediate Optimization Terminated Successfully

Updating Tf-values, please wait

£-COUNT  FUNCTION MAX{g} STEP Procedures
1 545.121 0 1
26 545.098 0 5.96e-08
51 545.058 0 5.96e-08
196 544 .987 0 1  mod Hess

Intermediate Optimization Terminated Successfully

Number of improvement steps on Co exceeded,



continuing with optimization on X only:

Updating Tf-values, please wait

f-COUNT  FUNCTION

1 30.0505
14 29.3947
29 28.5179

474 11.0803

MAX{g} STEP Procedures
0 1
0 0.000244
¢] 6.1e-05
0 1

Intermediate Optimization Terminated Successfully

Updating Tf-values, please wait

£f-COUNT  FUNCTION

1 37.9007
28 37.9006
62 37.2004

499 9.94873

MAX{g} STEP Procedures
0 1
0 1.49e-08
0 1.16e-10
0 1 mod Hess

Maximum number of iterations exceeded

Updating Tf-values, please wait

f-COUNT  FUNCTION

1 17.7262
25 17.7261
50 17.7257

499 15.1179

MaX{g} STEP
0 1
0 1.196-07
0 5.966-08
0 0.125

Maximum number of iterations exceeded

End of improvement phase,

Continuing with main iteration loop

Updating Tf-values, please wait

Procedures
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Starting Iteration 1 with (minimal) Tf = 750
Maximum real part of all ARI eigenvalues : Lambda_max_ARI = 0.00267
Maximum real part of all A_cl eigenvalues: Lambda_max_Acl = -0.445
Achieved H_inf-norms for all plants:
System 1 : 0.1782056
System 2 : 0.248668
£-COUNT  FUNCTION MAX{g} STEP Procedures
1 16.5223 0 1
26 16.5222 0 5.96e-08
54 16.5222 0 7.456-09
898 3.11972 0 0.5 mod Hess

Maximum number of iterations exceeded

A1l Hi-constraints satisfied

Co_out =

1.0e+02 *

Columns 1 through 4

-0.12550105856800
-0.33497386811212

Column 5

0.07546321725795
0.13073533249575

Gamma_ach =
0.05695666274842
X_out =

Columns 1 through
0.00395899934532

Columns 5 through
0.00750824600468

0.89086997906138  0.35143782391798 1.35261095959955
2.41299990656566  0.92063181212225  3.52022469854965

0.12963242582712

4
-0.01900536171326 -0.00194982498687 -0.01609309367332

8
0.22372281620987 0.01491783289404 0.00190207501306
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Columns ¢ through 12
-0.01651842028388 0.00604400182495  0.02339670805051  0.00234704648193

Columns 13 through 16
0.28261543024549 -0.00788095393616  0.02817775033799  0.00098758201217

Columns 17 through 20
-0.00716432022466 -0.00207342379310 -0.00643992932888 0.00140348168097

Columns 21 through 24
0.10793274494332 0.01466806585088 0.03045748624873 -0.00189741626634

Columns 25 through 28
0.00573040760352 0.021658136195693  0.00083333222729 0.14515239198804

Columns 29 through 30
0.02716374583356  0.02244058255040

Once again the design goal has been reached after the first main iteration, em-
phasizing once again the importance of good initial guesses. However, for the same
multi-plant problem, when we choose a set of smaller bounds on Gammea = [0.1, 0.11]
and start the design optimization with the same initial guesses as before, clearly a sat-
isfactory convergence will take a slightly longer time. A log of the program execution

is given below after the initial improvement phase.

Starting Iteration 1 with (minimal) Tf = 358
Maximum real part of all ARI eigenvalues : Lambda_max_ARI = 0.00558
Maximum real part of all A_cl eigenvalues: Lambda_max_Acl = -0.419
Achieved H_inf-norms for all plants:
System 1 : 0.163487
System 2 : 0.262504
£-COUNT  FUNCTION - MAX{g} STEP Procedures
1 24 .5368 0 1
31 24.5368 0 1.86e-09
63 24.5368 0 4.66e-10
899 3.90574 0 1  mod Hess

Maximum number of iterations exceeded



Updating Tf-values, please wait

Starting Iteration
Maximum real part of all ARI eigenvalues :
Maximum real part of all A_cl eigenvalues:

2 with (minimal)

Achieved H_inf-norms for all plants:

f-COUNT  FUNCTION
1 3.99268

20 3.99239

43 3.99203
899 2.29454

System
System

MAX{g} STEP
0 1
0 3.81e-06
0 2.38e-07

0 0.5

Maximum number of iterations exceeded

Updating Tf-values, please wait

Starting Iteration
Maximum real part of all ARI eigenvalues :
Maximum real part of all A_cl eigenvalues:

3 with (minimal)

Achieved H_inf-norms for all plants:

f-COUNT  FUNCTION
1 2.25419

22 2.25415

45 2.25396
899 1.65992

System
System

MAX{g} STEP
0 1
0 9.54e-07
0 2.38e-07

0 1

Maximum number of iterations exceeded

All Hi-constraints satisfied

Tf = 2.46e+03
Lambda_max_ARI
Lambda_max_Acl

: 0.0798264

: 0.209862

Procedures

Tf = 4.51e+03
Lambda_max_ARI
Lambda_max_Acl

: 0.0603576
: 0.136723

Procedures

mod Hess

0.000266
-0.428

9.3e-05
-0.445



Co_out =

1.0e+02 *

Columns 1 through 4

-0.41791228209161
-0.46116010039480

Column 5
-0.08449083071726
-0.13359059043192

Gamma_ach =

0.06582983596218

X_out =

4.44752162549461
4.96770681319143

0.09846974908558

Columns 1 through 4

0.00954172281255

Columns & through
0.00536221146395

Columns 9 through
-0.06444161581800

Columns 13 through
0.79158344370358

Columns 17 through
-0.02787365098033

Columns 21 through
0.32418777048187

Columns 25 through
0.00466389967999

Columns 29 through
-0.24917380201575

.10435603865224

1.23228899877861

12
0.01525554772346

16

.05645086683592

.00306582874682

0.03260732184157

0.02229485722969

30
0.08809115810297

0.63314014709939
0.72541231182832

.01003061271832

0.10661647033237

0.07260760853509

0.01048230245748

.03204022536248

0.36598113312310

.00059685472857

251

3.04060895422836
3.46117417794747

.07181595360680

0.70055503142613

.00173347068189

0.00252476732077

0.00648645844409

.08052795714074

0.80777388969307

The specified H.,~bounds have been achieved after 3 main iterations. In [105] it



was reported that the minimally achievable Ho—norm for the first plant condition
is approximately 0.056 and that for the second plant condition is 0.096. Hence, the
specified Hgyo-bounds in the above problem are very close to the optimally achiev-
able values. As a “rule of thumb” it is expected that the computation time for
convergence will increase when the chosen Gamma-bounds are getting closer to the
minimally achievable H,—norms and also when the problem size is large. Note also
that the maximum eigenvalue of all the ARD’s should be a decreasing function of
the iteration number, while the scaling factor “Tf” (the minimum over all scale fac-
tors tif]) is a monotonically increasing function. This constitutes the expected and
desired behavior of the algorithm. Failure of convergence would generally be charac-
terized by “stagnant Tf values”, and the maximum eigenvalue of all the ARI’s is a

non-monotonically decreasing function of the iteration number.



